Math Handbook
of Formulas, Processes and Tricks
(www.mathguy.us)

Pre-Algebra

Prepared by: Earl L. Whitney, FSA, MAAA
Version 2.5
April 6, 2022
Pre-Algebra Handbook

Table of Contents

*Blue = Developed specifically for Pre-Algebra Handbook
Green = Also included in Algebra Handbook
Purple = Also Included in Geometry Handbook*

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Numbers</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Divisibility Rules (2 to 12)</td>
</tr>
<tr>
<td>9</td>
<td>Prime Numbers</td>
</tr>
<tr>
<td>10</td>
<td>Prime Factor Trees</td>
</tr>
<tr>
<td>11</td>
<td>More about Prime Numbers</td>
</tr>
<tr>
<td>12</td>
<td>GCD and LCM (Greatest Common Divisor)</td>
</tr>
<tr>
<td>13</td>
<td>GCD and LCM (Least Common Multiple, Lowest Common Denominator)</td>
</tr>
<tr>
<td>14</td>
<td>Finding All Factors (Divisors)</td>
</tr>
<tr>
<td>15</td>
<td>Finding All Factors, a Second Approach</td>
</tr>
<tr>
<td>16</td>
<td>Roman Numerals</td>
</tr>
<tr>
<td>Chapter 2: Measures and Weights</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Metric Measures and Weights</td>
</tr>
<tr>
<td>18</td>
<td>Measures and Weights – U.S. Conversions</td>
</tr>
<tr>
<td>19</td>
<td>Measures and Weights – U.S./Metric Conversions</td>
</tr>
<tr>
<td>Chapter 3: Operations</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Order of Operations</td>
</tr>
<tr>
<td>21</td>
<td>Basic Properties of Algebra (e.g., Distributive)</td>
</tr>
<tr>
<td>22</td>
<td>Linear Patterns (Recognition, Converting to an Equation)</td>
</tr>
<tr>
<td>23</td>
<td>Operating with Real Numbers (Absolute Value, +, −, x, ÷)</td>
</tr>
<tr>
<td>Chapter 4: Fractions and Decimals</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Adding and Subtracting Fractions</td>
</tr>
<tr>
<td>25</td>
<td>Multiplying and Dividing Fractions</td>
</tr>
<tr>
<td>26</td>
<td>Mixed Numbers and Improper Fractions</td>
</tr>
<tr>
<td>27</td>
<td>Adding and Subtracting Mixed Numbers</td>
</tr>
<tr>
<td>28</td>
<td>Multiplying Mixed Numbers</td>
</tr>
<tr>
<td>29</td>
<td>Dividing Mixed Numbers</td>
</tr>
<tr>
<td>30</td>
<td>Decimal Calculations</td>
</tr>
<tr>
<td>31</td>
<td>Comparing Numbers</td>
</tr>
<tr>
<td>32</td>
<td>Rounding Numbers</td>
</tr>
</tbody>
</table>

Cover art by Rebecca Williams, Twitter handle: @jolteonkitty
Pre-Algebra Handbook

Table of Contents

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5: Percents</td>
<td></td>
</tr>
<tr>
<td>Conversions of Percents to Decimals and Fractions</td>
<td>33</td>
</tr>
<tr>
<td>Table of Decimal Conversions</td>
<td>34</td>
</tr>
<tr>
<td>Applying a Percent Increase</td>
<td>35</td>
</tr>
<tr>
<td>Applying a Percent Decrease</td>
<td>36</td>
</tr>
<tr>
<td>Calculating Percent Increases and Decreases</td>
<td>37</td>
</tr>
<tr>
<td>Pie Charts</td>
<td>38</td>
</tr>
<tr>
<td>Chapter 6: Exponents and Roots</td>
<td></td>
</tr>
<tr>
<td>Estimating Square Roots</td>
<td>39</td>
</tr>
<tr>
<td>Roots of Large Numbers</td>
<td>40</td>
</tr>
<tr>
<td>Exponent Formulas</td>
<td>41</td>
</tr>
<tr>
<td>Powers of 10</td>
<td>42</td>
</tr>
<tr>
<td>Scientific Notation (Format, Conversion)</td>
<td>43</td>
</tr>
<tr>
<td>Adding and Subtracting with Scientific Notation</td>
<td>44</td>
</tr>
<tr>
<td>Multiplying and Dividing with Scientific Notation</td>
<td>45</td>
</tr>
<tr>
<td>Chapter 7: Equations and Inequalities</td>
<td></td>
</tr>
<tr>
<td>Graphing with Coordinates (Cartesian Coordinates, Plotting Points)</td>
<td>46</td>
</tr>
<tr>
<td>Changing Words to Mathematical Expressions</td>
<td>47</td>
</tr>
<tr>
<td>Solving One-Step Equations</td>
<td>48</td>
</tr>
<tr>
<td>Solving Multi-Step Equations</td>
<td>49</td>
</tr>
<tr>
<td>Tips and Tricks for Solving Multi-Step Equations</td>
<td>50</td>
</tr>
<tr>
<td>Solving for a Variable</td>
<td>51</td>
</tr>
<tr>
<td>Inequalities</td>
<td>52</td>
</tr>
<tr>
<td>Graphs of Inequalities in One Dimension</td>
<td>53</td>
</tr>
<tr>
<td>Compound Inequalities in One Dimension</td>
<td>54</td>
</tr>
<tr>
<td>Chapter 8: Linear Functions</td>
<td></td>
</tr>
<tr>
<td>t-Charts</td>
<td>55</td>
</tr>
<tr>
<td>Slope of a Line (Mathematical Definition)</td>
<td>56</td>
</tr>
<tr>
<td>Slope of a Line (Rise over Run)</td>
<td>57</td>
</tr>
<tr>
<td>Slopes of Various Lines (8 Variations)</td>
<td>58</td>
</tr>
<tr>
<td>Various Forms of a Line (Standard, Slope-Intercept, Point-Slope)</td>
<td>59</td>
</tr>
<tr>
<td>Slopes of Parallel and Perpendicular Lines</td>
<td>60</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 9: Probability and Statistics</td>
</tr>
<tr>
<td>61</td>
<td>Probability and Odds</td>
</tr>
<tr>
<td>62</td>
<td>Probability with Dice</td>
</tr>
<tr>
<td>63</td>
<td>Mean, Median, Mode, Range</td>
</tr>
<tr>
<td>64</td>
<td>Stem and Leaf Plots</td>
</tr>
<tr>
<td>65</td>
<td>Box and Whisker Graphs</td>
</tr>
<tr>
<td></td>
<td>Chapter 10: Geometry Basics</td>
</tr>
<tr>
<td>66</td>
<td>Distance Between Points (1-Dimensional, 2-Dimensional)</td>
</tr>
<tr>
<td>67</td>
<td>Angles</td>
</tr>
<tr>
<td>68</td>
<td>Types of Angles</td>
</tr>
<tr>
<td>69</td>
<td>Parallel Lines and Transversals</td>
</tr>
<tr>
<td></td>
<td>Chapter 11: Triangles</td>
</tr>
<tr>
<td>70</td>
<td>What Makes a Triangle?</td>
</tr>
<tr>
<td>71</td>
<td>Types of Triangles (Scalene, Isosceles, Equilateral, Right)</td>
</tr>
<tr>
<td>72</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>73</td>
<td>Pythagorean Triples</td>
</tr>
<tr>
<td>74</td>
<td>Ratios and Proportions</td>
</tr>
<tr>
<td>75</td>
<td>Similar Triangles</td>
</tr>
<tr>
<td>76</td>
<td>Proportion Tables for Similar Triangles</td>
</tr>
<tr>
<td></td>
<td>Chapter 12: Quadrilaterals</td>
</tr>
<tr>
<td>77</td>
<td>Definitions of Quadrilaterals</td>
</tr>
<tr>
<td>78</td>
<td>Figures of Quadrilaterals</td>
</tr>
<tr>
<td>79</td>
<td>Characteristics of Parallelograms</td>
</tr>
<tr>
<td>80</td>
<td>Kites and Trapezoids</td>
</tr>
<tr>
<td></td>
<td>Chapter 13: Transformations</td>
</tr>
<tr>
<td>81</td>
<td>Introduction to Transformation</td>
</tr>
<tr>
<td>83</td>
<td>Reflection</td>
</tr>
<tr>
<td>84</td>
<td>Rotation</td>
</tr>
<tr>
<td>85</td>
<td>Translation</td>
</tr>
<tr>
<td>86</td>
<td>Compositions</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 14: Polygons</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Polygons – Basic (Definitions, Names of Common Polygons)</td>
</tr>
<tr>
<td>88</td>
<td>Polygons – More Definitions (Definitions, Diagonals of a Polygon)</td>
</tr>
<tr>
<td>89</td>
<td>Interior and Exterior Angles of a Polygon</td>
</tr>
<tr>
<td>Chapter 15: Perimeter, Area and Volume</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Perimeter and Area of a Triangle</td>
</tr>
<tr>
<td>91</td>
<td>Perimeter and Area of Quadrilaterals</td>
</tr>
<tr>
<td>92</td>
<td>Circle Lengths and Areas</td>
</tr>
<tr>
<td>93</td>
<td>Prisms</td>
</tr>
<tr>
<td>94</td>
<td>Cylinders</td>
</tr>
<tr>
<td>95</td>
<td>Surface Area by Decomposition</td>
</tr>
<tr>
<td>96</td>
<td>Pyramids</td>
</tr>
<tr>
<td>97</td>
<td>Cones</td>
</tr>
<tr>
<td>98</td>
<td>Spheres</td>
</tr>
<tr>
<td>99</td>
<td>Summary of Perimeter and Area Formulas – 2D Shapes</td>
</tr>
<tr>
<td>100</td>
<td>Summary of Surface Area and Volume Formulas – 3D Shapes</td>
</tr>
<tr>
<td>Appendix - Tables</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Addition Table</td>
</tr>
<tr>
<td>102</td>
<td>Multiplication Table</td>
</tr>
<tr>
<td>103</td>
<td>Index</td>
</tr>
</tbody>
</table>
Useful Websites

Wolfram Math World – Perhaps the premier site for mathematics on the Web. This site contains definitions, explanations and examples for elementary and advanced math topics.
http://mathworld.wolfram.com/

Purple Math – A great site for the Algebra student, it contains lessons, reviews and homework guidelines. The site also has an analysis of your study habits. Take the Math Study Skills Self-Evaluation to see where you need to improve.
http://www.purplemath.com/

Math.com – Has a lot of information about Algebra, including a good search function.
http://www.math.com/homeworkhelp/Algebra.html

Algebra.com – Has short descriptions and demonstrations for a wide variety of Algebra topics.
http://www.algebra.com/

Math League – Specializes in math contests, books, and computer software for students from the 4th grade through high school.
http://www.mathleague.com/help/geometry/geometry.htm
Pre-Algebra Handbook
Table of Contents

Schaum’s Outlines

An important student resource for any high school math student is a Schaum’s Outline. Each book in this series provides explanations of the various topics in the course and a substantial number of problems for the student to try. Many of the problems are worked out in the book, so the student can see examples of how they should be solved.

Schaum’s Outlines are available at Amazon.com, Barnes & Noble, Borders and other booksellers.

Note: This study guide was prepared to be a companion to most books on the subject of High School Algebra. In particular, I used the following texts to determine which subjects to include in this guide.

- Algebra 1, by James Schultz, Paul Kennedy, Wade Ellis Jr, and Kathleen Hollowelly.
- Geometry, by Ron Larson, Laurie Boswell, and Lee Stiff

Although a significant effort was made to make the material in this study guide original, some material from these texts was used in the preparation of the study guide.
Pre-Algebra

Divisibility Rules

The following rules can be used to determine whether a number is divisible by other numbers. This is particularly useful in reducing fractions to lowest terms because the rules can be used to test whether both the numerator and denominator are divisible by the same number.

<table>
<thead>
<tr>
<th>n</th>
<th>A number is divisible by “n” if and only if:</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>It is even, i.e., if it ends in 0, 2, 4, 6 or 8.</td>
<td>16 (even because it end in a 6) 948 (even because it ends in an 8)</td>
</tr>
<tr>
<td>3</td>
<td>The sum of its digits is divisible by 3. You may apply this test multiple times if necessary.</td>
<td>42 (4+2=6) 948 (9+4+8=21, then 2+1=3)</td>
</tr>
<tr>
<td>4</td>
<td>The number formed by its last 2 digits is divisible by 4.</td>
<td>332 (32÷4=8) 1,908 (08÷4=2)</td>
</tr>
<tr>
<td>5</td>
<td>It ends in a 0 or 5.</td>
<td>905 (ends in a 5) 384,140 (ends in a 0)</td>
</tr>
<tr>
<td>6</td>
<td>It is divisible by both 2 and 3.</td>
<td>36 (it is even and 3+6=9) 948 (it is even and 9+4+8=21)</td>
</tr>
<tr>
<td>7</td>
<td>Double the last digit and subtract it from the rest of the number. If the result is divisible by 7, so is the original number. You may apply this test multiple times if necessary.</td>
<td>868 (86-[2-8]=70, and 70÷7=10) 2,345 (234-[2-5]=224, then apply again: 22-[2-4]=14, and 14÷7=2)</td>
</tr>
<tr>
<td>8</td>
<td>The number formed by its last 3 digits is divisible by 8.</td>
<td>92,104 (104÷8=13) 727,520 (520÷8=65)</td>
</tr>
<tr>
<td>9</td>
<td>The sum of its digits is divisible by 9. You may apply this test multiple times if necessary.</td>
<td>2,385 (2+3+8+5=18, then 1+8=9) 89,487 (8+9+4+8+7=36, then 3+6=9)</td>
</tr>
<tr>
<td>10</td>
<td>It ends in a 0.</td>
<td>370 (ends in a 0) 345,890 (ends in a 0)</td>
</tr>
<tr>
<td>11</td>
<td>The alternating sum and difference of its digits is divisible by 11.</td>
<td>374 (3-7+4=0) 9,482 (9-4+8-2=11)</td>
</tr>
<tr>
<td>12</td>
<td>It is divisible by both 3 and 4.</td>
<td>996 (9+9+6=24 and 96÷4=24) 1,344 (1+3+4+4=12 and 44÷4=11)</td>
</tr>
</tbody>
</table>

Note: 0 is divisible by every number except itself.
Pre-Algebra
Prime Numbers

Definitions
A prime number is a natural number (i.e., a positive integer) that has no factors other than 1 and itself. The prime numbers less than 50 are:

\[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47\]

A composite number is a natural number that is not prime.

Prime Factorization
Every natural number has a unique prime factorization. This means that if you factor the number until all you have left are prime numbers, there is only one representation of the number in this form (ignoring the order of the factors). By mathematical convention, the prime factorization of a number is expressed as a product of its prime factors in numerical order, from low to high, with exponents on factors that are repeated.

Examples: \[40 = 2^3 \cdot 5\] \[330 = 2 \cdot 3 \cdot 5 \cdot 11\] \[637 = 7^2 \cdot 13\]

Deriving a Prime Factorization
To derive the unique prime factorization of a number \(n\):
- Divide the number by 2 as many times as 2 will go into the number.
- Move up to the next prime number and repeat the process.
- Repeat the previous step until all of the factors are prime.

Examples: Find the prime factorizations of 336, 1000, and 2160.

\[
\begin{array}{c}
336 = 2 \cdot 168 \\
= 2 \cdot 2 \cdot 84 \\
= 2 \cdot 2 \cdot 2 \cdot 42 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 21 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 7 \\
= 2^4 \cdot 3 \cdot 7
\end{array}
\quad
\begin{array}{c}
1000 = 2 \cdot 500 \\
= 2 \cdot 2 \cdot 250 \\
= 2 \cdot 2 \cdot 2 \cdot 125 \\
= 2 \cdot 2 \cdot 2 \cdot 5 \cdot 25 \\
= 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5 \\
= 2^3 \cdot 5^3
\end{array}
\quad
\begin{array}{c}
2160 = 2 \cdot 1080 \\
= 2 \cdot 2 \cdot 540 \\
= 2 \cdot 2 \cdot 2 \cdot 270 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 135 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 45 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 15 \\
= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \\
= 2^4 \cdot 3^3 \cdot 5
\end{array}
\]
What is a Prime Factor Tree?
A Prime Factor Tree is a device that can be used to find the prime factors of a number. Even though each number has a unique set of prime factors, most numbers do not have a unique prime factor tree. The nice thing about a tree is that you can work with any factors of the number, and by the time you have finished, you have found its unique set of prime factors.

To develop a prime factor tree:
- Write the number to be factored at the top of the tree.
- Beneath the number, write a pair of factors that multiply to get the number.
- Repeat the above step until all of the factors are prime.
- It is useful to identify the prime factors you develop in some manner, like circling them.
- Collect all of the prime factors to obtain the prime factorization of the number.

Examples:

![One Prime Factor Tree for 120](image1)
![Another Prime Factor Tree for 120](image2)

In both cases, the prime factorization of 120 is determined to be: \(120 = 2^3 \cdot 3 \cdot 5\)

Notice that the two trees in the examples obtain the same result even though they take different paths to get that result. Other paths are possible as well. The important thing is the result, not the path.
Interesting Facts about Primes

- 1 is defined to not be prime.
- 2 is the only even prime (2 divides every other even number).
- There are an infinite number of prime numbers.
- Large prime numbers form the basis of computer encryption routines used by banks and others on the internet.

Prime Testing

In order to determine if a number is prime, it is only necessary to try dividing it by primes less than its square root. That is because:

- If a composite number is a factor, then a smaller prime number is a factor.
- If a number larger than its square root is a factor, then a number less than its square root is a factor.

Example: Test whether 79 is prime.

Your first inclination might be to think you need to test every number less than 79 as a divisor of 79. However, from the above rule, it is only necessary to test 2, 3, 5, and 7; \(\sqrt{79} < 9 \), so only primes below 9 must be tested as factors. That’s a lot less work and much more efficient use of your time. Since none of the factors divide 79, it is prime.

The Sieve of Eratosthenes

A method for finding prime numbers was invented by an ancient Greek mathematician from Cyrene named Eratosthenes. He created a table of numbers and began striking out multiples of prime numbers. Here is an example out to 25. If the table were larger, we would need to strike out multiples of more primes (all primes \(\leq \sqrt{n} \), where \(n \) is the largest number in the table).

<table>
<thead>
<tr>
<th>Strike out multiples of 2</th>
<th>Strike out multiples of 3</th>
<th>Strike out multiples of 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25</td>
<td>2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25</td>
</tr>
</tbody>
</table>

The numbers remaining, after multiples of all primes are struck out, are prime.
Pre-Algebra
GCD and LCM

Simple methods for finding the Greatest Common Divisor (GCD) and the Least Common Multiple (LCM) are related, as shown below. Both involve developing a table of prime factors for the numbers in question. The methods are best illustrated by example.

Greatest Common Divisor (GCD)

Example A: Find the GCD of 180 and 105.

Step 1: Calculate the prime factors of each number and enter them into a small table:

\[
\begin{align*}
180 &= 2 \times 2 \times 3 \times 3 \times 5 \\
105 &= 3 \times 5 \times 7 \\
\text{GCD} &= 3 \times 5
\end{align*}
\]

So, \(\text{GCD} = 3 \times 5 = 15 \).

Step 2: Line up the prime factors so that those common to all of the numbers are in the same column.

Step 3: Bring any factors that show up for every number (i.e., that fill the column) below the line.

Step 4: Multiply all of the numbers below the line to obtain the GCD.

Example B: Find the GCD of 140, 210 and 462.

\[
\begin{align*}
140 &= 2 \times 2 \times 5 \times 7 \\
210 &= 2 \times 3 \times 5 \times 7 \\
462 &= 2 \times 3 \times 7 \times 11 \\
\text{GCD} &= 2 \times 7
\end{align*}
\]

So, \(\text{GCD} = 2 \times 7 = 14 \).

Example C: Find the GCD of 32 and 27.

\[
\begin{align*}
32 &= 2 \times 2 \times 2 \times 2 \times 2 \\
27 &= 3 \times 3 \times 3 \\
\text{GCD} &= (\text{there are no common factors})
\end{align*}
\]

So, \(\text{GCD} = 1 \).

If no common prime factors exist, \(\text{GCD} = 1 \) and the numbers are said to be relatively prime. Since 27 and 32 have no common prime factors, they are relatively prime.
Least Common Multiple (LCM)

Example A: Find the LCM of 12 and 18.

Step 1: Calculate the prime factors of each number and enter them into a small table:

\[
\begin{align*}
12 &= 2 \times 2 \times 3 \\
18 &= 2 \times 3 \times 3 \\
\text{LCM} &= 2 \times 2 \times 3 \times 3
\end{align*}
\]

So the LCM = \(2 \times 2 \times 3 \times 3 = 36\)

Step 2: Line up the prime factors so that those common to all of the numbers are in the same column.

Step 3: Bring one factor from every column below the line.

Step 4: Multiply all of the numbers below the line to obtain the LCM.

Example B: Find the LCM of 6, 8 and 18.

\[
\begin{align*}
6 &= 2 \times 3 \\
8 &= 2 \times 2 \times 2 \\
18 &= 2 \times 3 \times 3 \\
\text{LCM} &= 2 \times 2 \times 2 \times 3 \times 3
\end{align*}
\]

So, the LCM = \(2 \times 2 \times 2 \times 3 \times 3 = 72\).

Lowest Common Denominator (LCD)

When fractions with different denominators are to be added or subtracted, it is necessary to find the Lowest Common Denominator. The LCD is essentially the Least Common Multiple of the denominators in question. Consider this problem:

Example: Calculate: \(\frac{5}{12} - \frac{7}{18}\). In Example A, the LCM of 12 and 18 was calculated to be 36. To determine which fractional name for 1 must be multiplied by each fraction to obtain a common denominator, we look for the missing numbers in each row. From Example A above:

\[
\begin{align*}
12 &= 2 \times 2 \times 3 \\
18 &= 2 \times 3 \times 3 \\
\text{LCM} &= 2 \times 2 \times 3 \times 3 = 36
\end{align*}
\]

The missing number in the row for 12 is 3. Therefore, we use \(\frac{3}{3}\) as a multiplier for \(\frac{5}{12}\). Similarly, we use \(\frac{2}{2}\) as a multiplier for \(\frac{7}{18}\).

Result: \(\left(\frac{3}{3}\right) \left(\frac{5}{12}\right) - \left(\frac{7}{18}\right) \left(\frac{2}{2}\right) = \frac{15}{36} - \frac{14}{36} = \frac{1}{36}\)
Pre-Algebra
Finding All Factors (Divisors)

Definition
A factor (also called a divisor) is a number that divides into another number, leaving no remainder.

Examples: 6 has the factors: 1, 2, 3, 6.
30 has factors: 1, 2, 3, 5, 6, 10, 15, 30.

Finding Factors
To find the factors of a number \(n \)
- Divide each number less than \(\sqrt{n} \) into \(n \) to see if there is a remainder. Some can be tested quickly; for example, if the number is odd, no even numbers will divide it.
- Each successful division without remainder yields a pair of factors, one of which is less than \(\sqrt{n} \) and one of which is greater than \(\sqrt{n} \).
- Collect all of the factors, including both factors from each pair, into the solution set. Don’t forget the “trivial factors” 1 and \(n \).

Examples: Find all the factors of 28, 30, and 75.

\[
28 = 1 \cdot 28 = 2 \cdot 14 = 4 \cdot 7 \quad \text{Factors} = \{1, 2, 4, 7, 14, 28\}
\]
\[
30 = 1 \cdot 30 = 2 \cdot 15 = 3 \cdot 10 = 5 \cdot 6 \quad \text{Factors} = \{1, 2, 3, 5, 6, 10, 15, 30\}
\]
\[
75 = 1 \cdot 75 = 3 \cdot 25 = 5 \cdot 15 \quad \text{Factors} = \{1, 3, 5, 15, 25, 75\}
\]

Perfect Numbers
A perfect number \(n \) is a number whose factors, including 1 but excluding \(n \), add to \(n \). For example, see the factors of 28 in the example above \((1 + 2 + 4 + 7 + 14 = 28)\). The first six perfect numbers are:

\[
6 \quad 28 \quad 496 \quad 8,128 \quad 33,550,336 \quad 8,589,869,056
\]
- All even perfect numbers except 6 have the remainder 1 when divided by 9.
- It is not known whether there are any odd perfect numbers.
Pre-Algebra
Finding All Factors, a Second Approach

Another way to find all of the factors of a number is to work with its prime factorization. First recall that every number has a unique prime factorization. Next consider what the prime factorization of the number says about its factors.

- Each factor must be the product of a subset of the prime factors of the number.
- Each possible subset of prime factors will generate a unique factor of the number.

Finding Factors with Prime Factorization

Let \(\{p_1, p_2, \ldots, p_k\} \) be the set of primes included in the prime factorization of a number \(N \).

Let \(\{a_1, a_2, \ldots, a_k\} \) be the exponents of those primes in the prime factorization of \(N \).

Then, the prime factorization of \(N \) can be expressed as:

\[
N = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k}
\]

Factors can be formed from the products of each possible combination of primes in this formula. Note that each prime \(p_i \) can occur as few as zero times or as many as \(a_i \) times, a total of \((a_i + 1) \) possibilities. The number of factors of \(N \), then, is given by:

\[
\tau(N) = (a_1 + 1) \cdot (a_2 + 1) \cdot \ldots \cdot (a_k + 1)
\]

Example: Find all factors of the number 60.

First note that: \(60 = 2^2 \cdot 3^1 \cdot 5^1 \)

Then, \(\tau(60) = [(2 + 1) \cdot (1 + 1) \cdot (1 + 1)] = 12 \). Therefore, the number 60 has 12 factors.

What are the 12 factors?

- \(2^0 \cdot 3^0 \cdot 5^0 = 1 \)
- \(2^1 \cdot 3^0 \cdot 5^0 = 2 \)
- \(2^2 \cdot 3^0 \cdot 5^0 = 4 \)
- \(2^0 \cdot 3^1 \cdot 5^0 = 3 \)
- \(2^1 \cdot 3^1 \cdot 5^0 = 6 \)
- \(2^2 \cdot 3^1 \cdot 5^0 = 12 \)
- \(2^0 \cdot 3^0 \cdot 5^1 = 5 \)
- \(2^1 \cdot 3^0 \cdot 5^1 = 10 \)
- \(2^2 \cdot 3^0 \cdot 5^1 = 20 \)
- \(2^0 \cdot 3^1 \cdot 5^1 = 15 \)
- \(2^1 \cdot 3^1 \cdot 5^1 = 30 \)
- \(2^2 \cdot 3^1 \cdot 5^1 = 60 \)

In summary, the factors of 60 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Pre-Algebra

Roman Numerals

Roman Numerals are a system of numbers developed in Ancient Rome. Interestingly, there is no Roman Numeral for zero; they start at 1.

The symbols used and their corresponding values are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>5</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>500</td>
</tr>
<tr>
<td>M</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Larger numbers are created by placing a bar over a numeral; this indicates it should be multiplied by 1,000.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V̅</td>
<td>5,000</td>
</tr>
<tr>
<td>X̅</td>
<td>10,000</td>
</tr>
<tr>
<td>Ĉ</td>
<td>100,000</td>
</tr>
<tr>
<td>D̄</td>
<td>500,000</td>
</tr>
<tr>
<td>M̄</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Numerals are expressed by combining symbols according to the following set of rules:

- They are written with the largest symbols to the left.
- Smaller symbols written to the right indicate addition (e.g., DC indicates 600).
- A smaller number written to the left indicates subtraction (e.g., IV indicates 4).
- No more than three of a symbol can be used in a numeral (e.g., 30 is XXX, 40 is XL).
- If a digit is formed in a particular way, it is also formed that way in larger numerals, e.g., 99 is XCIX which is 90 (XC) plus 9(IX), not IC (100-1).

Roman Numerals for Key Values

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>10</td>
<td>X</td>
<td>100</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>20</td>
<td>XX</td>
<td>200</td>
<td>CC</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>30</td>
<td>XXX</td>
<td>300</td>
<td>CCC</td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>40</td>
<td>XL</td>
<td>400</td>
<td>CD</td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>50</td>
<td>L</td>
<td>500</td>
<td>D</td>
</tr>
<tr>
<td>6</td>
<td>VI</td>
<td>60</td>
<td>LX</td>
<td>600</td>
<td>DC</td>
</tr>
<tr>
<td>7</td>
<td>VII</td>
<td>70</td>
<td>LXX</td>
<td>700</td>
<td>DCC</td>
</tr>
<tr>
<td>8</td>
<td>VIII</td>
<td>80</td>
<td>LXXX</td>
<td>800</td>
<td>DCCC</td>
</tr>
<tr>
<td>9</td>
<td>IX</td>
<td>90</td>
<td>XC</td>
<td>900</td>
<td>CM</td>
</tr>
<tr>
<td>1,000</td>
<td>M</td>
<td>2,000</td>
<td>MM</td>
<td>3,000</td>
<td>MMM</td>
</tr>
</tbody>
</table>

Combine the numerals at left to make any number from 1 to 3,999.

Examples:

32 = XXXII
476 = CDLXXVI
514 = DXIV
888 = DCCCCLXXXVIII
999 = CMXCIX
2008 = MMVIII
King Henry

The following mnemonic device can be used to remember the order of metric measurements:

<table>
<thead>
<tr>
<th></th>
<th>King</th>
<th>Henry</th>
<th>Died</th>
<th>By</th>
<th>Drinking</th>
<th>Chocolate</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>km</td>
<td>hm</td>
<td>dkm</td>
<td>meters</td>
<td>dm</td>
<td>cm</td>
<td>mm</td>
</tr>
<tr>
<td>Mass</td>
<td>kg</td>
<td>hg</td>
<td>dkg</td>
<td>grams</td>
<td>dg</td>
<td>cg</td>
<td>mg</td>
</tr>
<tr>
<td>Volume</td>
<td>kl</td>
<td>hl</td>
<td>dkl</td>
<td>liters</td>
<td>dl</td>
<td>cl</td>
<td>ml</td>
</tr>
</tbody>
</table>

In moving from right to left:

For each position traversed,
- Divide by 10, or
- Move the decimal one place to the left.
- Add zeroes if needed.

In moving from left to right:

For each position traversed,
- Multiply by 10, or
- Move the decimal one place to the right.
- Add zeroes if needed.

In the mnemonic, the “b” in “by” stands for “base unit”; this is the unit that all others are based upon. The base units above are meters, grams, and liters.

The prefixes to the base unit, along with their meanings are:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meaning</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>kilo</td>
<td>1,000</td>
</tr>
<tr>
<td>h</td>
<td>hecto</td>
<td>100</td>
</tr>
<tr>
<td>dk</td>
<td>deka</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>deci</td>
<td>(\frac{1}{10})</td>
</tr>
<tr>
<td>c</td>
<td>centi</td>
<td>(\frac{1}{100})</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>(\frac{1}{1,000})</td>
</tr>
</tbody>
</table>

Examples:

<table>
<thead>
<tr>
<th>Conversion</th>
<th>Calculation Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 km = 100,000 cm</td>
<td>Add 5 zeroes to the right (for 5 positions moved in the above chart).</td>
</tr>
<tr>
<td>32 mg = .000 032 kg</td>
<td>Move the decimal 6 places to the left (for the 6 positions moved to the left in the above chart).</td>
</tr>
<tr>
<td>2.5 liters = 2,500 ml</td>
<td>Move the decimal 3 places to the right (for the 3 positions moved to the right in the above chart).</td>
</tr>
</tbody>
</table>
Pre-Algebra

Measures and Weights – U.S. Conversions

Distance

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 foot</td>
<td>= 12 inches</td>
</tr>
<tr>
<td>1 yard</td>
<td>= 3 feet = 36 inches</td>
</tr>
<tr>
<td>1 fathom</td>
<td>= 2 yards = 6 feet</td>
</tr>
<tr>
<td>1 rod</td>
<td>= 5.5 yards = 16.5 feet</td>
</tr>
<tr>
<td>1 furlong</td>
<td>= 40 rods = 220 yards</td>
</tr>
<tr>
<td>1 mile</td>
<td>= 8 furlongs = 1,760 yards = 5,280 feet</td>
</tr>
<tr>
<td>1 league</td>
<td>= 3 miles = 24 furlongs</td>
</tr>
<tr>
<td>1 acre</td>
<td>= 43,560 square feet</td>
</tr>
<tr>
<td>1 square mile</td>
<td>= 640 acres</td>
</tr>
</tbody>
</table>

Time

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>= 60 seconds</td>
</tr>
<tr>
<td>1 hour</td>
<td>= 60 minutes = 3,600 seconds</td>
</tr>
<tr>
<td>1 day</td>
<td>= 24 hours = 1,440 minutes</td>
</tr>
<tr>
<td>1 week</td>
<td>= 7 days = 168 hours</td>
</tr>
<tr>
<td>1 fortnight</td>
<td>= 2 weeks = 14 days</td>
</tr>
<tr>
<td>1 month</td>
<td>= 4 1/3 weeks</td>
</tr>
<tr>
<td>1 year</td>
<td>= 12 months = 52 weeks</td>
</tr>
<tr>
<td>1 year</td>
<td>= 365 1/4 days</td>
</tr>
</tbody>
</table>

Capacity

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fluid dram</td>
<td>= 60 minims</td>
</tr>
<tr>
<td>1 fluid ounce</td>
<td>= 8 fluid drams</td>
</tr>
<tr>
<td>1 gill</td>
<td>= 4 fluid ounces</td>
</tr>
<tr>
<td>1 cup</td>
<td>= 2 gills = 8 fluid ounces</td>
</tr>
<tr>
<td>1 pint</td>
<td>= 2 cups = 16 fluid ounces</td>
</tr>
<tr>
<td>1 quart</td>
<td>= 2 pints = 4 cups</td>
</tr>
<tr>
<td>1 gallon</td>
<td>= 4 quarts = 16 cups</td>
</tr>
<tr>
<td>1 peck</td>
<td>= 2 gallons</td>
</tr>
<tr>
<td>1 bushel</td>
<td>= 4 pecks = 8 gallons</td>
</tr>
</tbody>
</table>
Pre-Algebra

Measures and Weights – U.S./Metric Conversions

U.S. to Metric

<table>
<thead>
<tr>
<th>Distance</th>
<th>Metric to U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 millimeter = .03937 inch</td>
<td>1 inch = 2.54 centimeters</td>
</tr>
<tr>
<td>1 centimeter = .3937 inch</td>
<td>1 foot = 30.48 centimeters</td>
</tr>
<tr>
<td>1 meter = 3.281 feet</td>
<td>1 yard = .9144 meter</td>
</tr>
<tr>
<td>1 kilometer = .6214 mile</td>
<td>1 mile = 1.6093 kilometers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 carat = 3.086 grains</td>
<td>1 ounce = 28.35 grams</td>
</tr>
<tr>
<td>1 gram = .03527 ounces</td>
<td>1 pound = .4536 kilogram</td>
</tr>
<tr>
<td>1 kilogram = 2.2046 pounds</td>
<td>1 ton = .9072 metric ton</td>
</tr>
<tr>
<td>1 metric ton = 2,204.6 pounds</td>
<td>1 long ton = 1.016 metric tons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capacity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 milliliter = 16.23 minims</td>
<td>1 fluid ounce = 29.57 milliliters</td>
</tr>
<tr>
<td>1 milliliter = .03381 fluid ounce</td>
<td>1 pint = 473.2 milliliters</td>
</tr>
<tr>
<td>1 liter = 1.0567 quarts</td>
<td>1 quart = .9464 liter</td>
</tr>
<tr>
<td>1 liter = .2642 gallon</td>
<td>1 gallon = 3.785 liters</td>
</tr>
</tbody>
</table>

Other Metric Weights:
- 1 carat = 200 milligrams (5 carats = 1 gram)
- 1 metric ton = 1,000 kilograms
Pre-Algebra
Order of Operations

To the non-mathematician, there may appear to be multiple ways to evaluate an algebraic expression. For example, how would one evaluate the following?

\[3 \cdot 4 \cdot 7 + 6 \cdot 5^2 \]

You could work from left to right, or you could work from right to left, or you could do any number of other things to evaluate this expression. As you might expect, mathematicians do not like this ambiguity, so they developed a set of rules to make sure that any two people evaluating an expression would get the same answer.

PEMDAS

In order to evaluate expressions like the one above, mathematicians have defined an order of operations that must be followed to get the correct value for the expression. The acronym that can be used to remember this order is **PEMDAS**. Alternatively, you could use the mnemonic phrase “Please Excuse My Dear Aunt Sally” or make up your own way to memorize the order of operations. The components of **PEMDAS** are:

- **P** Anything in Parentheses is evaluated first.
- **E** Items with Exponents are evaluated next.
- **M** Multiplication and ...
- **D** Division are performed next.
- **A** Addition and ...
- **S** Subtraction are performed last.

Parenthetical Device. A useful device is to use apply parentheses to help you remember the order of operations when you evaluate an expression. Parentheses are placed around the items highest in the order of operations; then solving the problem becomes more natural. Using PEMDAS and this parenthetical device, we solve the expression above as follows:

Initial Expression:

\[3 \cdot 4 \cdot 7 + 6 \cdot 5^2 \]

Add parentheses/brackets:

\[= (3 \cdot 4 \cdot 7) + [6 \cdot (5^2)] \]

Solve using PEMDAS:

\[= (84) + (6 \cdot 25) \]

\[= (84) + (150) \]

Final Answer

\[= 234 \]

Note: Any expression which is ambiguous, like the one above, is poorly written. Students should strive to ensure that any expressions they write are easily understood by others and by themselves. Use of parentheses and brackets is a good way to make your work more understandable.
Properties of Addition and Multiplication. For any real numbers a, b, and c:

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition for Addition</th>
<th>Definition for Multiplication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closure Property</td>
<td>$a + b$ is a real number</td>
<td>$a \cdot b$ is a real number</td>
</tr>
<tr>
<td>Identity Property</td>
<td>$a + 0 = 0 + a = a$</td>
<td>$a \cdot 1 = 1 \cdot a = a$</td>
</tr>
<tr>
<td>Inverse Property</td>
<td>$a + (-a) = (-a) + a = 0$</td>
<td>For $a \neq 0$, $\frac{1}{a} = \frac{1}{a} = 1$</td>
</tr>
<tr>
<td>Commutative Property</td>
<td>$a + b = b + a$</td>
<td>$a \cdot b = b \cdot a$</td>
</tr>
<tr>
<td>Associative Property</td>
<td>$(a + b) + c = a + (b + c)$</td>
<td>$(a \cdot b) \cdot c = a \cdot (b \cdot c)$</td>
</tr>
<tr>
<td>Distributive Property</td>
<td>$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$</td>
<td></td>
</tr>
</tbody>
</table>

Properties of Zero. For any real number a:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication by 0</td>
<td>$a \cdot 0 = 0 \cdot a = 0$</td>
</tr>
<tr>
<td>0 Divided by Something</td>
<td>For $a \neq 0$, $\frac{0}{a} = 0$</td>
</tr>
<tr>
<td>Division by 0</td>
<td>$\frac{a}{0}$ is undefined (even if $a = 0$)</td>
</tr>
</tbody>
</table>

Properties of Equality. For any real numbers a, b, and c:

<table>
<thead>
<tr>
<th>Property</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition Property</td>
<td>If $a = b$, then $a + c = b + c$</td>
</tr>
<tr>
<td>Subtraction Property</td>
<td>If $a = b$, then $a - c = b - c$</td>
</tr>
<tr>
<td>Multiplication Property</td>
<td>If $a = b$, then $a \cdot c = b \cdot c$</td>
</tr>
<tr>
<td>Division Property</td>
<td>If $a = b$ and $c \neq 0$, then $a \div c = b \div c$</td>
</tr>
</tbody>
</table>
Recognizing Linear Patterns

The first step to recognizing a pattern is to arrange a set of numbers in a table. The table can be either horizontal or vertical. Here, we consider the pattern in a horizontal format. More advanced analysis generally uses the vertical format.

Consider this pattern:

<table>
<thead>
<tr>
<th>x-value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-value</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

To analyze the pattern, we calculate differences of successive values in the table. These are called first differences. If the first differences are constant, we can proceed to converting the pattern into an equation. If not, we do not have a linear pattern. In this case, we may choose to continue by calculating differences of the first differences, which are called second differences, and so on until we get a pattern we can work with.

In the example above, we get a constant set of first differences, which tells us that the pattern is indeed linear.

<table>
<thead>
<tr>
<th>x-value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y-value</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

First Differences: 3 3 3 3 3

Converting a Linear Pattern to an Equation

Creating an equation from the pattern is easy if you have constant differences and a y-value for x = 0. In this case,

- The equation takes the form \(y = mx + b \), where
- “m” is the constant difference from the table, and
- “b” is the y-value when x = 0.

In the example above, this gives us the equation: \(y = 3x + 6 \).

Note: If the table does not have a value for x=0, you can still obtain the value of “b”. Simply extend the table left or right until you have an x-value of 0; then use the first differences to calculate what the corresponding y-value would be. This becomes your value of “b”.

Finally, it is a good idea to test your equation. For example, if \(x = 4 \), the above equation gives \(y = (3 \cdot 4) + 6 = 18 \), which is the value in the table. So we can be pretty sure our equation is correct.
Pre-Algebra
Operating with Real Numbers

Absolute Value

The absolute value of something is the distance it is from zero. The easiest way to get the absolute value of a number is to eliminate its sign. Absolute values are always positive or 0.

\[|-5| = 5 \quad |3| = 3 \quad |0| = 0 \quad \left| -\frac{3}{4} \right| = \frac{3}{4} \quad |1.5| = 1.5 \]

Adding and Subtracting Real Numbers

Adding Numbers with the Same Sign:
- Add the numbers without regard to sign.
- Give the answer the same sign as the original numbers.
- Examples:
 \((-6) + (-3) = -9\)
 \(12 + 6 = 18\)

Adding Numbers with Different Signs:
- Ignore the signs and subtract the smaller number from the larger one.
- Give the answer the sign of the number with the greater absolute value.
- Examples:
 \((-6) + 3 = -3\)
 \((-7) + 11 = 4\)

Subtracting Numbers:
- Change the sign of the number or numbers being subtracted.
- Add the resulting numbers.
- Examples:
 \((-6) - (-3) = (-6) + 3 = -3\)
 \(13 - 4 = 13 + (-4) = 9\)

Multiplying and Dividing Real Numbers

Numbers with the Same Sign:
- Multiply or divide the numbers without regard to sign.
- Give the answer a “+” sign.
- Examples:
 \((-6) \cdot (-3) = +18 = 18\)
 \(12 \div 3 = +4 = 4\)

Numbers with Different Signs:
- Multiply or divide the numbers without regard to sign.
- Give the answer a “−” sign.
- Examples:
 \((-6) \cdot (3) = -18\)
 \(12 \div (-3) = -4\)
To add or subtract fractions:

- Rewrite the problem if necessary, in order to make it easier to work.
- Calculate a common denominator. *Note: another page shows how to do this.*
- Express each fraction in terms of the common denominator.
- Add or subtract the numerators of the fractions. Leave the denominator unchanged.
- Simplify if possible. Note: if you want to convert the solution to a mixed number, first simplify the fraction resulting from the addition or subtraction; then, calculate the mixed number.

Example 1:

\[
\frac{3}{8} + \frac{11}{12}
\]

Create LCD:

\[
= \frac{3 \cdot 3}{3 \cdot 8} + \frac{11 \cdot 2}{12 \cdot 2}
\]

Express with LCD:

\[
= \frac{9}{24} + \frac{22}{24}
\]

Add numerators:

\[
= \frac{31}{24}
\]

Simplify:

\[
= 1 \frac{7}{24}
\]

Example 2:

\[
\frac{1}{3} - \frac{2}{5}
\]

Create LCD:

\[
= \frac{5 \cdot 1}{5 \cdot 3} - \frac{2 \cdot 3}{3 \cdot 3}
\]

Express with LCD:

\[
= \frac{5}{15} - \frac{6}{15}
\]

Add numerators:

\[
= -\frac{1}{15}
\]

Simplify:

\[
= -\frac{1}{15}
\]

Example 3:

\[
\left(-\frac{1}{9}\right) - \left(-\frac{5}{6}\right)
\]

Rewrite problem:

\[
\left(-\frac{1}{9}\right) + \left(\frac{5}{6}\right)
\]

Create LCD:

\[
= \frac{2}{2} \cdot \left(-\frac{1}{9}\right) + \frac{5}{6} \cdot \frac{3}{3}
\]

Express with LCD:

\[
= \frac{-2}{18} + \frac{15}{18}
\]

Add numerators:

\[
= \frac{13}{18}
\]

Example 4:

\[
-\frac{4}{7} + \frac{9}{28}
\]

Create LCD:

\[
= \frac{4 \cdot (-4)}{4 \cdot 7} + \frac{9}{28}
\]

Express with LCD:

\[
= \frac{-16}{28} + \frac{9}{28}
\]

Add numerators:

\[
= \frac{-7}{28}
\]

Simplify:

\[
= -\frac{1}{4}
\]
Pre-Algebra
Multiplying and Dividing Fractions

To multiply or divide fractions:
- Rewrite the problem if necessary, in order to make it easier to work.
- If the problem is a division, invert the divisor and change the sign to multiplication (“flip that guy and multiply”).
- Bring the numerators and denominators together in a single fraction.
- Simplify the multiplications you will need to do by reducing the factors in the numerator and denominator.
- Multiply both the numerators and denominators of the fractions.
- Simplify if possible. Note: if you want to convert the solution to a mixed number, first simplify the fraction resulting from the multiplication; then, calculate the mixed number.

Example 1:
\[
\frac{2}{3} \cdot \frac{9}{14}
\]
Bring together:
\[
\frac{2 \cdot 9}{3 \cdot 14}
\]
Reduce by 2’s:
\[
\frac{1 \cdot 9}{3 \cdot 7}
\]
Reduce by 3’s:
\[
\frac{1 \cdot 3}{1 \cdot 7}
\]
Multiply:
\[
\frac{3}{7}
\]

Example 2:
\[
\frac{4}{7} \div \frac{19}{21}
\]
Flip divisor:
\[
\frac{4}{7} \cdot \frac{21}{19}
\]
Bring together:
\[
\frac{4 \cdot 21}{7 \cdot 19}
\]
Reduce by 7’s:
\[
\frac{4 \cdot 3}{1 \cdot 19}
\]
Multiply:
\[
\frac{12}{19}
\]

Example 3:
\[
\left(-\frac{1}{24}\right) \div \left(-\frac{5}{32}\right)
\]
Flip + Rewrite:
\[
\left(-\frac{1}{24}\right) \cdot \left(\frac{32}{5}\right)
\]
Bring together:
\[
\frac{1 \cdot 32}{24 \cdot 5}
\]
Reduce by 8’s:
\[
\frac{1 \cdot 4}{3 \cdot 5}
\]
Multiply:
\[
\frac{4}{15}
\]

Example 4:
\[
\left(-\frac{6}{17}\right) \cdot \frac{5}{12}
\]
Rewrite:
\[
\frac{-6}{17} \cdot \frac{5}{12}
\]
Bring together:
\[
\frac{-6 \cdot 5}{17 \cdot 12}
\]
Reduce by 6’s:
\[
\frac{-1 \cdot 5}{17 \cdot 2}
\]
Multiply:
\[
\frac{5}{34}
\]
Pre-Algebra
Mixed Numbers and Improper Fractions

Definitions

A proper fraction is one in which (ignoring the sign) the numerator is less than the denominator. Proper fractions are between -1 and 1. It need not be in lowest terms.

An improper fraction is one in which (ignoring the sign) the numerator is greater than or equal to the denominator. Proper fractions are less than -1 or greater than 1. It need not be in lowest terms. Remember that being less than -1 means “more negative” than -1. So, for example, -2 and $-\frac{7}{5}$ are both less than -1.

A mixed number is a whole number followed by a proper fraction.

Examples:

<table>
<thead>
<tr>
<th>Proper Fractions</th>
<th>$\frac{2}{3}$, $\frac{6}{7}$, $\frac{1}{9}$, $\frac{375}{401}$, $\frac{-18}{20}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper Fractions</td>
<td>$\frac{-4}{4'}$, $\frac{17}{12'}$, $\frac{29}{2'}$, $\frac{97}{96'}$, $\frac{375}{25}$</td>
</tr>
<tr>
<td>Mixed Numbers</td>
<td>$2\frac{3}{4}$, $-6\frac{1}{2}$, $13\frac{12}{21}$, $-1\frac{4}{7}$, $365\frac{1}{4}$</td>
</tr>
</tbody>
</table>

Lowest Terms

A fraction is in lowest terms when it does not share any factors in the numerator and denominator. To put a fraction in lowest terms divide any common divisors out of both the numerator and denominator. Example: $\frac{14}{22} = \frac{7}{11}$ when we divide the common factor 2 out of both the numerator and denominator.

Conversion between Mixed Numbers and Improper Fractions

Mixed Number to Improper Fraction:

Multiply the whole number by the denominator of the fraction and add it to the numerator of the fraction to get the numerator of the improper fraction:

$$2 \frac{3}{4} = \left(\frac{2 \cdot 4}{4} \right) + \frac{3}{4} = \frac{11}{4}$$

Improper Fraction to Mixed Number:

Divide the numerator by the denominator. Show the result as a whole number followed by the remainder expressed as a fraction:

$$\frac{11}{4} = 11 \div 4 = 2 \frac{3}{4}$$
Pre-Algebra
Adding and Subtracting Mixed Numbers

To add or subtract mixed numbers,

- Rearrange the terms so the whole numbers are together and the fractions are together.
- Add or subtract the whole numbers.
- Add or subtract the fractional parts.
- Add the results of the first two steps. If subtracting, you may need to borrow 1 from the whole numbers in order to perform the subtraction.
- Simplify, if possible.

Example 1: \[2 \frac{6}{11} + 4 \frac{4}{33}\]

Rearrange terms: \[= (2 + 4) + \left(\frac{6}{11} + \frac{4}{33}\right)\]

Add whole numbers: \[= 6 + \left(\frac{3}{3} \cdot \frac{6}{11} + \frac{4}{33}\right)\]

Add fractions: \[= 6 + \left(\frac{18+4}{33}\right)\]

Recombine, Simplify: \[= 6 \frac{22}{33} = 6 \frac{2}{3}\]

Example 2: \[8 \frac{3}{14} - 2 \frac{8}{21}\]

Rearrange terms: \[= (8 - 2) + \left(\frac{3}{14} - \frac{8}{21}\right)\]

Subtract whole numbers: \[= 6 + \left(\frac{3}{3} \cdot \frac{3}{14} - \frac{8}{21} \cdot \frac{2}{2}\right)\]

Subtract fractions: \[= 6 + \left(\frac{9-16}{42}\right) = 6 + \frac{-7}{42}\]

Borrow 1 for subtraction: \[= 5 + \left(1 - \frac{7}{42}\right) = 5 + \left(\frac{42-7}{42}\right)\]

Simplify: \[= 5 \frac{35}{42} = 5 \frac{5}{6}\]
The two methods shown below are equivalent. Use whichever one you like best.

Box Method

In the box method,
- Create a 2x2 array of multiplications from the parts of the fractions.
- Perform the 4 multiplications.
- Add the results.

Example: Multiply \((2 \frac{3}{7}) \cdot (4 \frac{2}{5}) \)

<table>
<thead>
<tr>
<th>Multiply</th>
<th>2</th>
<th>(\frac{3}{7})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>(\frac{12}{7})</td>
</tr>
<tr>
<td>(\frac{2}{5})</td>
<td>(\frac{4}{5})</td>
<td>(\frac{6}{35})</td>
</tr>
</tbody>
</table>

The result is obtained by adding the results of the 4 separate multiplications.

\[
\left(2 \frac{3}{7}\right) \cdot \left(4 \frac{2}{5}\right) = 8 + \frac{12}{7} + \frac{4}{5} + \frac{6}{35}
\]

\[
= 8 + \frac{60 + 28 + 6}{35}
\]

\[
= 8 + \frac{94}{35}
\]

\[
= 8 + 2 \frac{24}{35}
\]

\[
= 10 \frac{24}{35}
\]

Improper Fraction Method

In the Improper Fraction Method,
- Change the two mixed numbers to improper fractions.
- Multiply the improper fractions.
- Change the product back to a mixed number.

Example: Multiply \((2 \frac{3}{7}) \cdot (4 \frac{2}{5}) \)

\[
\left(2 \frac{3}{7}\right) \cdot \left(4 \frac{2}{5}\right) = \frac{17}{7} \cdot \frac{22}{5}
\]

\[
= \frac{374}{35}
\]

\[
= 10 \frac{24}{35}
\]
Pre-Algebra

Dividing Mixed Numbers

Improper Fraction Method

To divide mixed numbers, it may be best to use the **Improper Fraction Method**.

Example: Divide \(\left(12 \frac{4}{7} \right) \div \left(3 \frac{1}{14} \right) \)

Step 1: Write the starting problem.

\[
\left(12 \frac{4}{7} \right) \div \left(3 \frac{1}{14} \right)
\]

Step 2: Convert each mixed number to an improper fraction.

\[
= \frac{88}{7} \div \frac{43}{14}
\]

Step 3: Convert the division to a multiplication. Remember to “flip that guy and multiply.”

\[
= \frac{88}{7} \cdot \frac{14}{43}
\]

Step 4: Simplify the multiplication if possible.

\[
= \frac{88}{1} \cdot \frac{2}{43}
\]

Step 5: Multiply both values in the numerator and in the denominator.

\[
= \frac{176}{43}
\]

Step 6: Divide the numerator by the denominator to obtain the solution to the problem.

\[
= 4 \frac{4}{43}
\]

Step 7: Simplify your answer further, if possible.

No further simplification is possible in the example.

Check:

\[
\left(12 \frac{4}{7} \right) \div \left(3 \frac{1}{14} \right) \approx 4 \frac{4}{43}
\]

\[
12.57 \div 3.07 \approx 4.09
\]

\[
4.09 = 4.09
\]

The result does not need to be exact, but should be very close. The result in the example is exact to 2 decimals.

Note: If you do not have a calculator, carefully check each step to make sure both your logic and your arithmetic are correct.
Pre-Algebra
Decimal Calculations

Adding and Subtracting Decimals

- Fill in zeroes so that both numbers have the same number of digits after the decimal point.
- Line up the numbers in vertical form.
- Add or subtract.
- Keep the same number of decimals in the result that you have in your vertical form.

Example: 14.02 + 37.1

\[
\begin{array}{c}
14.02 \\
+ 37.10 \\
\hline
51.12 \\
\end{array}
\]

Multiplying Decimals

- Line up the numbers in vertical form.
- Multiply as you would if the numbers did not have decimals.
- The result (product) will have a number of decimals equal to the sum of the numbers of decimals in the numbers being multiplied. For example, if a number with 3 decimals is multiplied by a number with 2 decimals, the result will have 5 decimals.

Example: 14.02 \cdot 37.1

\[
\begin{array}{c}
14.02 \\
\cdot 37.1 \\
\hline
1402 \\
9814 \\
4206 \\
\hline
520.142 \\
\end{array}
\]

Dividing Decimals

- Change the original problem. Move the decimal in the divisor to the right until the divisor becomes a whole number. Move the decimal to the right in the dividend the same number of decimals.
- Line up the numbers in long division form.
- The decimal in the quotient will be in the same location as it is in the dividend. Place it there.
- Divide without regard to the decimal.
- Check to see if your answer makes sense. Multiply the quotient and the divisor to see their product is equal to the dividend.

Example: 69.615 \div 2.1

Rewrite: 696.15 \div 21

\[
\begin{array}{c}
696.15 \\
21 \underline{696.15} \\
63 \underline{6615} \\
63 \underline{315} \\
21 \underline{105} \\
105 \underline{0} \\
\end{array}
\]
Comparing Decimals

In comparing decimal numbers, it is useful to add zeroes after the decimal point so that all numbers have the same number of zeroes. To do this,

- Find the number that has the most digits after the decimal point.
- Fill zeroes in the other numbers so they also have that number of digits after the decimal. This will make the problem much easier on your eyes.
- Identify the larger number (or, the order of the numbers if there are more than two).

Example – Trick question: What number is bigger, four-point-eight or four-point-ten?

Solution: Write the numbers: 4.8 and 4.10
Fill in zeroes: 4.80 and 4.10
Compare the numbers: 4.80 is larger
Answer: Four-point-eight is larger than four-point-ten.

Putting Fractions in Numerical Order

In comparing fractions, we use a trick:

- Cross multiply the fractions.
- Put the product of each multiplication on the side of the equal sign as the numerator used in the multiplication.
- Compare the resulting integers.
- The order of the numbers in the original problem is the same as the order of the integers in the cross-multiplication.

Example: Which is larger ... \(\frac{5}{7} \) or \(\frac{3}{4} \)?

Solution: Cross Multiply: \(5 \cdot 4 \) vs. \(3 \cdot 7 \)
Simplify: \(20 < 21 \)

Because the larger number is on the right, the number on the right in the original problem is also the larger value. Therefore, \(\frac{3}{4} \) is the larger fraction.

Alternative: If you have a calculator, you can convert each fraction to a decimal and put the decimals in order.
In rounding a number to the n^{th} position, look at the numbers to the right of the n^{th} position. Then,

Rule 1: If the next number to the right is 4 or lower, round down. That is, replace all of the numbers to the right of the n^{th} position with zeroes. This is also called truncation.

Rule 2: If the next number to the right is 5 and there are no other non-zero numbers to the right, special rules for rounding 5’s apply (see below).

Rule 3: If the next number to the right is 5 followed by any non-zero number anywhere to the right, round up. That is, add one to the number in the n^{th} position and replace all of the numbers to the right of the n^{th} position with zeroes.

Rule 4: If the next number to the right is 6 or higher, round up.

Special Rules for Rounding 5’s

There are two different (and conflicting) rules for rounding 5’s. You should make sure that you know which one your teacher requires you to use.

In rounding a number to the n^{th} position, when there are no non-zero digits to the right:

Round Up Rule: Round up whenever there is a 5 in the next position to the right. This rule is often taught in high school to make things easier for the student. The problem with this approach is that if a number of roundings are performed, there is an upward bias in the results.

Round to the Even Digit Rule. Round the number in the n^{th} position either up or down, using whichever result produces an even number in the n^{th} position. This rule is often used in college and business because it does not result in a bias when multiple roundings are performed.

Examples: (note: the number in the $(n+1)^{th}$ place is highlighted in orange)

<table>
<thead>
<tr>
<th>Round</th>
<th>To what place?</th>
<th>Result</th>
<th>Rule Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.843 67</td>
<td>.001</td>
<td>2.844</td>
<td>Round Up – Rule 4</td>
</tr>
<tr>
<td>325</td>
<td>10</td>
<td>330 or 320</td>
<td>Rule 3 – depends on “5” Rule</td>
</tr>
<tr>
<td>3.141 592 653</td>
<td>.000 000 1</td>
<td>3.141 592 7</td>
<td>Round Up – Rule 2</td>
</tr>
<tr>
<td>9,214,387</td>
<td>millions</td>
<td>9,000,000</td>
<td>Round Down – Rule 1</td>
</tr>
<tr>
<td>643.915 425 89</td>
<td>millionths</td>
<td>643.915 426</td>
<td>Round Down – Rule 1</td>
</tr>
<tr>
<td>2,459.1</td>
<td>tens</td>
<td>2,460</td>
<td>Round Up – Rule 4</td>
</tr>
<tr>
<td>42.625 12</td>
<td>hundredths</td>
<td>42.63</td>
<td>Round Up – Rule 2</td>
</tr>
</tbody>
</table>
Pre-Algebra

Conversions of Percents to Decimals and Fractions

The word cent comes from the Latin centum, meaning 100. So,

- A penny is a cent.
- A century is 100 years.
- A Roman centurion was in charge of 100 soldiers.

Percent means “per 100” or “out of 100.”

Conversion To and From Decimals

A percent is converted to a decimal by moving the decimal point two places to the left.

\[
17\% = .17 \\
64\% = .64
\]

A decimal is converted to a percent by moving the decimal point two places to the right.

\[
.625 = 62.5\% \\
.87 = 87\%
\]

Conversion To and From Fractions

A percent is converted to a fraction by dividing the percent by 100 and reducing the fraction to lowest terms,

\[
25\% = \frac{25}{100} = \frac{1}{4} \\
36\% = \frac{36}{100} = \frac{9}{25}
\]

A fraction is converted to a percent by multiplying by 100.

\[
\frac{3}{4} \cdot 100\% = \frac{300}{4} \% = 75\% \\
\frac{1}{5} \cdot 100\% = \frac{100}{5} \% = 20\%
\]

More Examples:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Decimal</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0</td>
<td>(\frac{0}{100} = 0)</td>
</tr>
<tr>
<td>15%</td>
<td>.15</td>
<td>(\frac{15}{100} = \frac{3}{20})</td>
</tr>
<tr>
<td>44%</td>
<td>.44</td>
<td>(\frac{44}{100} = \frac{11}{20})</td>
</tr>
<tr>
<td>50%</td>
<td>.5</td>
<td>(\frac{50}{100} = \frac{1}{2})</td>
</tr>
<tr>
<td>65%</td>
<td>.65</td>
<td>(\frac{65}{100} = \frac{13}{20})</td>
</tr>
<tr>
<td>80%</td>
<td>.8</td>
<td>(\frac{80}{100} = \frac{4}{5})</td>
</tr>
<tr>
<td>95%</td>
<td>.95</td>
<td>(\frac{95}{100} = \frac{19}{20})</td>
</tr>
<tr>
<td>100%</td>
<td>1</td>
<td>(\frac{100}{100} = 1)</td>
</tr>
</tbody>
</table>
Pre-Algebra

Decimal Conversions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>.50</td>
<td>50%</td>
</tr>
<tr>
<td>1/3</td>
<td>.333</td>
<td>33.3%</td>
</tr>
<tr>
<td>2/3</td>
<td>.667</td>
<td>66.7%</td>
</tr>
<tr>
<td>1/4</td>
<td>.25</td>
<td>25%</td>
</tr>
<tr>
<td>2/4</td>
<td>.50</td>
<td>50%</td>
</tr>
<tr>
<td>3/4</td>
<td>.75</td>
<td>75%</td>
</tr>
<tr>
<td>1/5</td>
<td>.20</td>
<td>20%</td>
</tr>
<tr>
<td>2/5</td>
<td>.40</td>
<td>40%</td>
</tr>
<tr>
<td>3/5</td>
<td>.60</td>
<td>60%</td>
</tr>
<tr>
<td>4/5</td>
<td>.80</td>
<td>80%</td>
</tr>
<tr>
<td>1/6</td>
<td>.1667</td>
<td>16.67%</td>
</tr>
<tr>
<td>2/6</td>
<td>.3333</td>
<td>33.3%</td>
</tr>
<tr>
<td>3/6</td>
<td>.50</td>
<td>50%</td>
</tr>
<tr>
<td>4/6</td>
<td>.6667</td>
<td>66.67%</td>
</tr>
<tr>
<td>5/6</td>
<td>.8333</td>
<td>83.3%</td>
</tr>
<tr>
<td>1/7</td>
<td>.142857</td>
<td>14.2857%</td>
</tr>
<tr>
<td>2/7</td>
<td>.285714</td>
<td>28.5714%</td>
</tr>
<tr>
<td>3/7</td>
<td>.428571</td>
<td>42.8571%</td>
</tr>
<tr>
<td>4/7</td>
<td>.571429</td>
<td>57.1429%</td>
</tr>
<tr>
<td>5/7</td>
<td>.714286</td>
<td>71.4286%</td>
</tr>
<tr>
<td>6/7</td>
<td>.857143</td>
<td>85.7143%</td>
</tr>
<tr>
<td>1/8</td>
<td>.125</td>
<td>12.5%</td>
</tr>
<tr>
<td>3/8</td>
<td>.375</td>
<td>37.5%</td>
</tr>
<tr>
<td>4/8</td>
<td>.500</td>
<td>50.0%</td>
</tr>
<tr>
<td>5/8</td>
<td>.625</td>
<td>62.5%</td>
</tr>
<tr>
<td>6/8</td>
<td>.750</td>
<td>75.0%</td>
</tr>
<tr>
<td>7/8</td>
<td>.875</td>
<td>87.5%</td>
</tr>
<tr>
<td>1/9</td>
<td>.111</td>
<td>11.1%</td>
</tr>
<tr>
<td>2/9</td>
<td>.222</td>
<td>22.2%</td>
</tr>
<tr>
<td>3/9</td>
<td>.333</td>
<td>33.3%</td>
</tr>
<tr>
<td>4/9</td>
<td>.444</td>
<td>44.4%</td>
</tr>
<tr>
<td>5/9</td>
<td>.556</td>
<td>55.6%</td>
</tr>
<tr>
<td>6/9</td>
<td>.667</td>
<td>66.7%</td>
</tr>
<tr>
<td>7/9</td>
<td>.778</td>
<td>77.8%</td>
</tr>
<tr>
<td>8/9</td>
<td>.889</td>
<td>88.9%</td>
</tr>
<tr>
<td>1/10</td>
<td>.1</td>
<td>10%</td>
</tr>
<tr>
<td>2/10</td>
<td>.2</td>
<td>20%</td>
</tr>
<tr>
<td>3/10</td>
<td>.3</td>
<td>30%</td>
</tr>
<tr>
<td>4/10</td>
<td>.4</td>
<td>40%</td>
</tr>
<tr>
<td>5/10</td>
<td>.5</td>
<td>50%</td>
</tr>
<tr>
<td>6/10</td>
<td>.6</td>
<td>60%</td>
</tr>
<tr>
<td>7/10</td>
<td>.7</td>
<td>70%</td>
</tr>
<tr>
<td>8/10</td>
<td>.8</td>
<td>80%</td>
</tr>
<tr>
<td>9/10</td>
<td>.9</td>
<td>90%</td>
</tr>
<tr>
<td>1/11</td>
<td>.09091</td>
<td>9.091%</td>
</tr>
<tr>
<td>1/12</td>
<td>.08333</td>
<td>8.333%</td>
</tr>
<tr>
<td>1/13</td>
<td>.07692</td>
<td>7.692%</td>
</tr>
<tr>
<td>1/14</td>
<td>.07143</td>
<td>7.143%</td>
</tr>
<tr>
<td>1/15</td>
<td>.06667</td>
<td>6.667%</td>
</tr>
<tr>
<td>1/16</td>
<td>.06250</td>
<td>6.250%</td>
</tr>
<tr>
<td>1/17</td>
<td>.05882</td>
<td>5.882%</td>
</tr>
<tr>
<td>1/18</td>
<td>.05556</td>
<td>5.556%</td>
</tr>
<tr>
<td>1/19</td>
<td>.05263</td>
<td>5.263%</td>
</tr>
<tr>
<td>1/20</td>
<td>.05000</td>
<td>5.000%</td>
</tr>
</tbody>
</table>
Applying a Percent Increase

There are two methods for working with percent increases. Use the one you like best.

Method 1:
- Start with the amount before increase (i.e., the original amount).
- Calculate the amount of the increase.
- Add the original amount and the amount of the increase to obtain the final amount.

\[
\text{(increase amount)} = \left(\frac{\text{original amount}}{\text{amount}}\right) \cdot \left(\frac{\text{percent}}{\text{increase}}\right)
\]

\[
\text{(final amount)} = \left(\frac{\text{original amount}}{\text{amount}}\right) + \left(\frac{\text{increase}}{\text{amount}}\right)
\]

An advantage of this approach is that you calculate the amount of the increase. Sometimes, this is an important value to know.

Example: What do you get when you increase 150 by 10%?

\[
\text{Increase Amount} = 10\% \cdot 150 = 15
\]

\[
\text{Final Amount} = 150 + 15 = 165
\]

Method 2:
- Add the percent increase to 100%.
- Multiply the original amount by this new percentage to obtain the final amount.

\[
\left(\frac{\text{total}}{\text{percent}}\right) = 100\% + \left(\frac{\text{percent}}{\text{increase}}\right)
\]

\[
\left(\frac{\text{final}}{\text{amount}}\right) = \left(\frac{\text{original}}{\text{amount}}\right) \cdot \left(\frac{\text{total}}{\text{percent}}\right)
\]

This approach may be easier and has extensive business applications.

Example: What do you get when you increase 150 by 10%?

\[
\text{Total Percent} = 100\% + 10\% = 110\% = 1.1
\]

\[
\text{Final Amount} = 150 \cdot 1.1 = 165
\]
It is common in mathematics to work with percent decreases. In a store you may see a sign that says “Sale – 40% off.” In such a case, you may want to calculate the sale price.

Applying a Percent Decrease

There are two methods for working with percent decreases. Use the one you like best.

Method 1:
- Start with the amount before decrease (i.e., the original amount).
- Calculate the amount of the decrease.
- Subtract the amount of the decrease from the original amount to obtain the final amount.

\[
\begin{align*}
(decrease) &= (original) \cdot (percent) \\
(final) &= (original) - (decrease)
\end{align*}
\]

An advantage of this approach is that you calculate the amount of the decrease. Sometimes, this is an important value to know (e.g., how much money did you save?).

Example: What do you get when you decrease 150 by 40%?

\[
\begin{align*}
Decrease\ Amount &= 40\% \cdot 150 = 60 \\
Final\ Amount &= 150 - 60 = 90
\end{align*}
\]

Method 2:
- Subtract the percent increase from 100%.
- Multiply the original amount by this new percentage to obtain the final amount.

\[
\begin{align*}
(total\ percent) &= 100\% - (percent) \\
(final) &= (original) \cdot (total\ percent)
\end{align*}
\]

This approach may be easier and has the same form as the formula for percent increase. It also has extensive business applications.

Example: What do you get when you decrease 150 by 40%?

\[
\begin{align*}
Total\ Percent &= 100\% - 40\% = 60\% = 0.6 \\
Final\ Amount &= 150 \cdot 0.6 = 90
\end{align*}
\]
Pre-Algebra
Calculating Percent Increases and Decreases

Many times, you have the original amount and the final amount after either an increase or decrease in value. You may want to calculate the percent of that increase or decrease.

Percent Increase

Given a starting amount and a final amount,

\[
\frac{\text{increase}}{\text{amount}} = \frac{\text{final amount}}{} - \frac{\text{original amount}}{}
\]

\[
\frac{\text{percent increase}}{\text{increase}} = \frac{\text{amount of increase}}{\text{original amount}}
\]

Example: A stock increases in value from $80 to $96; what percent has it increased?

\[
\text{increase amount} = 96 - 80 = 16
\]

\[
\text{percent increase} = 16 \div 80 = .20 = 20\%
\]

Percent Decrease

Given a starting amount and a final amount,

\[
\frac{\text{decrease}}{\text{amount}} = \frac{\text{original amount}}{} - \frac{\text{final amount}}{}
\]

\[
\frac{\text{percent decrease}}{\text{decrease}} = \frac{\text{amount of decrease}}{\text{original amount}}
\]

Example: A stock decreases in value from $80 to $68; what percent has it increased?

\[
\text{decrease amount} = 80 - 68 = 12
\]

\[
\text{percent decrease} = 12 \div 80 = .15 = 15\%
\]

Notice the following:

- You calculate both an increase and a decrease as the difference between the original and final amounts.
- The percent change is always calculated as the \textit{amount of the change} divided by the \textit{original amount}.
Pre-Algebra

Pie Charts

A Pie Chart is a circular chart that uses percentages to show how parts of a whole compare to the whole and to each other. A number of tools are readily available to make pie charts. The ones below were constructed using Microsoft Excel 2007.

Elements of a Pie Chart

A pie chart should contain the following items:

- **Title** – A short title should be placed over the chart to describe the information in it. There may be both primary and secondary titles; the secondary titles are optional.
- **Body** – the body of the chart is a circle with radii that divide the interior of the circle into sectors. Each sector represents a portion of the circle in the same proportion that the item represented by the sector relates to the whole represented by the circle.
- **Legend** – A legend identifies each sector and tells what it represents. Legends are optional.
- **Labels** – Labels may be placed in each sector to indicate the percentage it contains or to describe the item it represents.

The sum of the percentages in a pie chart must always add up to 100%.

Sample Pie Charts

The chart on the left uses both labels and a legend to provide information, whereas the chart on the right provides all of its information using labels alone. With pie charts, the key is to provide information; you have a lot of options to be creative as long as you achieve that goal.
Pre-Algebra

Estimating Square Roots

Square Roots of Perfect Squares

The square root of a perfect square can be read right off the table to the right. For example,

\[\sqrt{36} = 6 \quad \text{because} \quad 6^2 = 36 \]

It is worthwhile to memorize the perfect squares in this table. They occur very frequently in math from 7th grade and up.

Square Roots of Other Numbers

Square roots of numbers other than perfect squares can be estimated with a process called interpolation. To calculate \(\sqrt{n} \):

- Find where \(n \) fits between perfect squares in the right hand column of the table to the right.
- Determine the corresponding square roots of the perfect squares above and below \(n \).
- Interpolate between the two square roots in the previous step based on where \(n \) lies between the perfect squares.

Example:

Estimate \(\sqrt{127} \)

127 lies between 121 and 144 in the table to the right.

Line up the three square roots and perfect squares in a table:

<table>
<thead>
<tr>
<th>Square Root</th>
<th>Perfect Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>121</td>
</tr>
<tr>
<td>(x = \sqrt{127})</td>
<td>127</td>
</tr>
<tr>
<td>12</td>
<td>144</td>
</tr>
</tbody>
</table>

Then, solve the proportion: \[\frac{x-11}{1} = \frac{6}{23} \]

Cross multiply: \[23x - 253 = 6 \quad \Rightarrow \quad 23x = 259 \]

Finally, \[x = \frac{259}{23} = 11.26 \quad \Rightarrow \quad \sqrt{127} = 11.26 \quad \text{by interpolation} \]

Using a calculator, the actual value, to 2 decimals, is: \(\sqrt{127} = 11.27 \quad \text{by calculator} \)
Pre-Algebra

Roots of Large Numbers

There are times when it is useful to be able to estimate a root of a large number. Usually, it is useful to do so to check an answer you have calculated on a calculator.

Square Roots

To estimate the square root of a large number:

- Rewrite the number with its digits in pairs from the right.
- Take the square root of the leftmost digit or pair of digits.
- Count the number of pairs of digits to the right of the leading digit or digits. Add this number of zeroes after the value calculated in the previous step.

Square Root Example:

Take the square root of 162,000

\[\sqrt{162000} \approx \sqrt{16 20 00} \]

Leftmost 2 Pairs of Digits Digits on Right
\[\sqrt{16} = 4 \quad \text{Add 2 zeroes} \]

Estimate is 400

Check: \(400^2 = 160,000 \)

Higher Level Roots

To estimate the \(n \)-th root of a large number:

- Rewrite the number with its digits in groups of size \(n \) from the right.
- Take the \(n \)-th root of the leftmost set of digits.
- Count the number of sets of digits to the right of the leading digit or digits. Add this number of zeroes after the value calculated in the previous step.

3rd (Cube) Root Example:

Take the 3rd root of 27,000,000,000

\[\sqrt[3]{27,000,000,000} \approx \sqrt[3]{27 000 000 000} \]

Leftmost 3 Sets of 3 Digits Digits on Right
\[\sqrt[3]{27} = 3 \quad \text{Add 3 zeroes} \]

Estimate is 3,000

Check: \(3000^3 = 27,000,000,000 \)

4th Root Example:

Take the 4th root of 62,512,256,013

\[\sqrt[4]{62,512,256,013} \approx \sqrt[4]{625 1225 6013} \]

Leftmost 2 Sets of 4 Digits Digits on Right
\[\sqrt[4]{625} = 5 \quad \text{Add 2 zeroes} \]

Estimate is 500

Check: \(500^4 = 62,500,000,000 \)
Pre-Algebra
Exponent Formulas

<table>
<thead>
<tr>
<th>Word Description of Property</th>
<th>Math Description of Property</th>
<th>Limitations on Variables</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product of Powers</td>
<td>$a^p \cdot a^q = a^{(p+q)}$</td>
<td></td>
<td>$x^4 \cdot x^3 = x^7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x^5 \cdot x^{-8} = x^{-3}$</td>
</tr>
<tr>
<td>Quotient of Powers</td>
<td>$\frac{a^p}{a^q} = a^{(p-q)}$</td>
<td>$a \neq 0$</td>
<td>$\frac{y^5}{y^2} = y^3$</td>
</tr>
<tr>
<td>Power of a Power</td>
<td>$(a^p)^q = a^{(p\cdot q)}$</td>
<td></td>
<td>$(z^4)^3 = z^{12}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(x^{-3})^{-5} = x^{15}$</td>
</tr>
<tr>
<td>Anything to the zero power is 1</td>
<td>$a^0 = 1$</td>
<td>$a \neq 0$</td>
<td>$91^0 = 1$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(xyz^3)^0 = 1$, if $x, y, z \neq 0$</td>
</tr>
<tr>
<td>Negative powers generate the reciprocal of what a positive power generates</td>
<td>$a^{-p} = \frac{1}{a^p}$</td>
<td>$a \neq 0$</td>
<td>$x^{-3} = \frac{1}{x^3}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$(\frac{1}{x})^{-5} = x^5$</td>
</tr>
<tr>
<td>Power of a product</td>
<td>$(a \cdot b)^p = a^p \cdot b^p$</td>
<td></td>
<td>$(3y)^3 = 27y^3$</td>
</tr>
<tr>
<td>Power of a quotient</td>
<td>$(\frac{a}{b})^p = \frac{a^p}{b^p}$</td>
<td>$b \neq 0$</td>
<td>$(\frac{x}{4})^3 = \frac{x^3}{64}$</td>
</tr>
<tr>
<td>Converting a root to a power</td>
<td>$\sqrt[n]{a} = a^{(1/n)}$</td>
<td>$n \neq 0$</td>
<td>$\sqrt{x} = x^{1/2}$</td>
</tr>
</tbody>
</table>
Uses of Powers of 10

Powers of 10 are useful in mathematics and science. In particular, they are used in scientific notation to express very large numbers and very small numbers without using up all the space a bunch of zeroes would take. Numbers with a lot of zeroes are also hard to grasp, whereas powers of 10 are relatively easy to grasp.

Negative Powers of 10

For negative powers of 10, the number of zeroes before the 1, including one zero to the left of the decimal point, is equal to the exponent (disregarding the negative sign).

Zero Power of 10

\[10^0 = 1 \] (notice, no zeroes to the left or right of the 1)

Positive Powers of 10

For positive powers of 10, the number of zeroes after the 1 is equal to the exponent.

Fun Only – Special Cases

There are two special cases for powers of 10 that mathematicians have defined. For very big numbers, mathematicians have defined the googol and the googolplex. These are not to be confused with Google, the internet search engine; they are spelled differently.

They are defined as:

\[\text{googol} = 10^{100} \] (a 1 followed by 100 zeroes)
\[\text{googolplex} = 10^{\text{googol}} \] (a 1 followed by googol zeroes)

Maybe you can create your own name for:

\[10^{\text{googolplex}} \] (a 1 followed by googolplex zeroes)
Pre-Algebra
Scientific Notation

Format
A number in scientific notation has two parts:

- A number which is at least 1 and is less than 10 (i.e., it must have only one digit before the decimal point). This number is called the coefficient.
- A power of 10 which is multiplied by the first number.

Here are a few examples of regular numbers expressed in scientific notation.

\[
\begin{align*}
32 &= 3.2 \times 10^1 \\
0.00034 &= 3.4 \times 10^{-4} \\
1,420,000 &= 1.42 \times 10^6 \\
1000 &= 1 \times 10^3 \\
-450 &= -4.5 \times 10^2
\end{align*}
\]

How many digits? How many zeroes?
There are a couple of simple rules for converting from scientific notation to a regular number or for converting from a regular number to scientific notation:

- If a regular number is less than 1, the exponent of 10 in scientific notation is negative. The number of leading zeroes in the regular number is equal to the absolute value of this exponent. In applying this rule, you must count the zero before the decimal point in the regular number. Examples:

<table>
<thead>
<tr>
<th>Original Number</th>
<th>Action</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00034</td>
<td>Count 4 zeroes</td>
<td>3.4 \times 10^{-4}</td>
</tr>
<tr>
<td>6.234 \times 10^{-8}</td>
<td>Add 8 zeroes before the digits</td>
<td>0.000 000 062 34</td>
</tr>
</tbody>
</table>

- If the number is greater than 1, the number of digits after the first one in the regular number is equal to the exponent of 10 in the scientific notation.

<table>
<thead>
<tr>
<th>Original Number</th>
<th>Action</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,800,000</td>
<td>Count 6 digits after the “4”</td>
<td>4.8 \times 10^6</td>
</tr>
<tr>
<td>9.6 \times 10^3</td>
<td>Add 3 digits after the “9”</td>
<td>9,600</td>
</tr>
</tbody>
</table>

- As a general rule, multiplying by powers of 10 moves the decimal point one place for each power of 10.
 - Multiplying by positive powers of 10 moves the decimal to the right.
 - Multiplying by negative powers of 10 moves the decimal to the left.
When adding or subtracting numbers in scientific notation:

- **Adjust the numbers so they have the same power of 10.** This works best if you adjust the representation of the smaller number so that it has the same power of 10 as the larger number. To do this:
 - Call the difference between the exponents of 10 in the two numbers “n”.
 - Raise the power of 10 of the smaller number by “n”, and
 - Move the decimal point of the coefficient of the smaller number “n” places to the left.

- **Add the coefficients, keeping the power of 10 unchanged.**

- **If the result is not in scientific notation, adjust it so that it is.**
 - If the coefficient is at least 1 and less than 10, the answer is in the correct form.
 - If the coefficient is 10 or greater, increase the exponent of 10 by 1 and move the decimal point of the coefficient one space to the left.
 - If the coefficient is less than 1, decrease the exponent of 10 by 1 and move the decimal point of the coefficient one space to the right.

Examples:

\[
\begin{array}{ccc}
3.2 \times 10^3 & \rightarrow & 0.32 \times 10^4 \\
+9.9 \times 10^4 & \rightarrow & +9.90 \times 10^4 \\
\hline
10.22 \times 10^4 & = & 1.022 \times 10^5
\end{array}
\]

Explanation: A conversion of the smaller number is required prior to adding because the exponents of the two numbers are different. After adding, the result is no longer in scientific notation, so an extra step is needed to convert it into the appropriate format.

\[
\begin{array}{ccc}
6.1 \times 10^{-2} & \rightarrow & 6.1 \times 10^{-2} \\
+2.3 \times 10^{-2} & \rightarrow & +2.3 \times 10^{-2} \\
\hline
8.4 \times 10^{-2}
\end{array}
\]

Explanation: No conversion is necessary because the exponents of the two numbers are the same. After adding, the result is in scientific notation, so no additional steps are required.

\[
\begin{array}{ccc}
1.2 \times 10^{-8} & \rightarrow & 1.20 \times 10^{-8} \\
-4.5 \times 10^{-9} & \rightarrow & -0.45 \times 10^{-8} \\
\hline
0.75 \times 10^{-8} & = & 7.5 \times 10^{-9}
\end{array}
\]

Explanation: A conversion of the smaller number is required prior to subtracting because the exponents of the two numbers are different. After subtracting, the result is no longer in scientific notation, so an extra step is needed to convert it into the appropriate format.
Pre-Algebra

Multiplying and Dividing with Scientific Notation

When multiplying or dividing numbers in scientific notation:

- **Multiply or divide the coefficients.**
- **Multiply or divide the powers of 10.** Remember that this means adding or subtracting the exponents while keeping the base of 10 unchanged.
 - If you are multiplying, add the exponents of 10.
 - If you are dividing, subtract the exponents of 10.
- **If the result is not in scientific notation, adjust it so that it is.**
 - If the coefficient is at least 1 and less than 10, the answer is in the correct form.
 - If the coefficient is 10 or greater, increase the exponent of 10 by 1 and move the decimal point of the coefficient one space to the left.
 - If the coefficient is less than 1, decrease the exponent of 10 by 1 and move the decimal point of the coefficient one space to the right.

Examples:

\[
4 \times 10^6 \cdot 5 \times 10^{-4} = 20 \times 10^2 = 2.0 \times 10^3
\]

Explanation: The coefficients are multiplied and the exponents are added. After multiplying, the result is no longer in scientific notation, so an extra step is needed to convert it into the appropriate format.

\[
1.2 \times 10^{-2} \cdot 2.0 \times 10^{-6} = 2.4 \times 10^{-8}
\]

Explanation: The coefficients are multiplied and the exponents are added. After multiplying, the result is in scientific notation, so no additional steps are required.

\[
3.3 \times 10^4 \div 5.5 \times 10^{-2} = 0.6 \times 10^6 = 6.0 \times 10^5
\]

Explanation: The coefficients are divided and the exponents are subtracted. After dividing, the result is no longer in scientific notation, so an extra step is needed to convert it into the appropriate format.
Pre-Algebra
Graphing with Coordinates

Graphs in two dimensions are very common in algebra and are one of the most common algebra applications in real life.

Coordinates

The plane of points that can be graphed in 2 dimensions is called the Rectangular Coordinate Plane or the Cartesian Coordinate Plane (named after the French mathematician and philosopher René Descartes).

- Two axes are defined (usually called the x- and y-axes).
- Each point on the plane has an x value and a y value, written as: \((x-value, y-value)\)
- The point \((0, 0)\) is called the origin, and is usually denoted with the letter “O”.
- The axes break the plane into 4 quadrants, as shown above. They begin with Quadrant 1 where \(x\) and \(y\) are both positive and increase numerically in a counter-clockwise fashion.

Plotting Points on the Plane

When plotting points,

- the x-value determines how far right (positive) or left (negative) of the origin the point is plotted.
- The y-value determines how far up (positive) or down (negative) from the origin the point is plotted.

Examples:

The following points are plotted in the figure to the right:

- \(A = (2, 3)\) in Quadrant 1
- \(B = (-3, 2)\) in Quadrant 2
- \(C = (-2, -2)\) in Quadrant 3
- \(D = (4, -1)\) in Quadrant 4
- \(O = (0, 0)\) is not in any quadrant
Pre-Algebra
Changing Words to Mathematical Expressions

Word Problems use words that must be translated into mathematical expressions to be solved. In these problems, certain words are used repeatedly. Here are some of them.

<table>
<thead>
<tr>
<th>Category of Words</th>
<th>Words</th>
<th>Sample Word Expression</th>
<th>Math Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>added to increased by more than plus sum of total of</td>
<td>6 added to 4 21 increased by 6 5 more than 9 The total of 3 and 7</td>
<td>6 + 4 = 10 21 + 6 = 27 5 + 9 = 14 3 + 7 = 10</td>
</tr>
<tr>
<td>Subtraction</td>
<td>decreased by difference between difference of less less than lower than minus reduced by subtracted from</td>
<td>13 decreased by 6 Difference of 42 and 24 6 less than 9 12 lower than 33 11 reduced by 3</td>
<td>13 − 6 = 7 42 − 24 = 18 9 − 6 = 3 33 − 12 = 21 11 − 3 = 8</td>
</tr>
<tr>
<td>Multiplication</td>
<td>double multiplied by of product of times triple twice</td>
<td>Double 12 Product of 3 and 6 14 times 3 Triple 7</td>
<td>2 · 12 = 24 3 · 6 = 18 14 · 3 = 42 3 · 7 = 21</td>
</tr>
<tr>
<td>Division</td>
<td>divided among divided by half one-third out of per quotient of ratio of</td>
<td>12 divided by 6 Half of 24 One third of 18 Quotient of 32 and 16 Ratio of 24 and 6</td>
<td>12 ÷ 6 = 2 24 ÷ 2 = 12 18 ÷ 3 = 6 32 ÷ 16 = 2 24 ÷ 6 = 4</td>
</tr>
<tr>
<td>Equals</td>
<td>equals generates gives is, are, other forms of “to be” provides yields</td>
<td>6 and 4 generates x 4 lower than x gives 6 x is triple 4 12 out of x is $\frac{1}{2}$</td>
<td>$6 + 4 = x$ $x − 4 = 6$ $x = 3 \cdot 4$ $\frac{12}{x} = \frac{1}{2}$</td>
</tr>
</tbody>
</table>
Pre-Algebra

Solving One-Step Equations

The main thrust in a one-step equation is to isolate the variable on one side of the equation, and have all the “numbers” on the other side. This is accomplished by “un-doing” whatever operation in the equation is interacting with the variable. By definition, a one-step equation requires only one step to develop a solution.

Operations are “un-done” by applying the opposite (or, inverse) operation on the equation. Inverse operations are listed in the following table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Inverse Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>Subtraction</td>
</tr>
<tr>
<td>Subtraction</td>
<td>Addition</td>
</tr>
<tr>
<td>Multiplication</td>
<td>Division</td>
</tr>
<tr>
<td>Division</td>
<td>Multiplication</td>
</tr>
<tr>
<td>Exponent</td>
<td>Logarithm</td>
</tr>
<tr>
<td>Logarithm</td>
<td>Exponent</td>
</tr>
</tbody>
</table>

Examples:

Example 1:
Solve: \(x + 4 = 9 \)
Subtract 4: \(-4 - 4 \)
Result: \(x = 5 \)

Example 2:
Solve: \(x - 3 = -6 \)
Add 3: \(+3 + 3 \)
Result: \(x = -3 \)

Example 3:
Solve: \(3x = -15 \)
Divide by 3: \(\frac{3x}{3} = \frac{-15}{3} \)
Result: \(x = -5 \)

Example 4:
Solve: \(\frac{1}{6}x = 4 \)
Multiply by 6: \(\cdot 6 \cdot 6 \)
Result: \(x = 24 \)
Pre-Algebra
Solving Multi-Step Equations

Reverse PEMDAS

One systematic way to approach multi-step equations is Reverse PEMDAS. PEMDAS describes the order of operations used to evaluate an expression. Solving an equation is the opposite of evaluating it, so reversing the PEMDAS order of operations seems appropriate.

The guiding principles in the process are:

- Each step works toward isolating the variable for which you are trying to solve.
- Each step “un-does” an operation in Reverse PEMDAS order:

 - **Subtraction** ↔ **Inverses** ↔ **Addition**
 - **Division** ↔ **Inverses** ↔ **Multiplication**
 - **Exponents** ↔ **Inverses** ↔ **Logarithms**
 - **Parentheses** ↔ **Inverses** ↔ **Remove Parentheses (and repeat process)**

The list above shows inverse operation relationships. **In order to undo an operation, you perform its inverse operation.** For example, to undo addition, you subtract; to undo division, you multiply. Here are a couple of examples:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve:</td>
<td>2 \cdot (2x + 5) - 3 = -5</td>
</tr>
<tr>
<td>Step 1: Add 4</td>
<td>Step 1: Add 3</td>
</tr>
<tr>
<td>3x - 4 = 14</td>
<td>+3 + 3</td>
</tr>
<tr>
<td>Result:</td>
<td>Result:</td>
</tr>
<tr>
<td>3x = 18</td>
<td>2 \cdot (2x + 5) = -3</td>
</tr>
<tr>
<td>Step 2: Divide by 3</td>
<td>Step 2: Divide by 2</td>
</tr>
<tr>
<td>(\frac{3x}{3} = \frac{18}{3})</td>
<td>(\frac{2x + 5}{2} = \frac{-5}{2})</td>
</tr>
<tr>
<td>Result:</td>
<td>Result:</td>
</tr>
<tr>
<td>(x = 6)</td>
<td>(2x + 5 = -1)</td>
</tr>
<tr>
<td>Notice that we add and subtract before we multiply and divide. Reverse PEMDAS.</td>
<td>Step 3: Remove parentheses</td>
</tr>
<tr>
<td></td>
<td>Step 4: Subtract 5</td>
</tr>
<tr>
<td></td>
<td>2x + 5 = -1</td>
</tr>
<tr>
<td></td>
<td>(-5 - 5)</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
</tr>
<tr>
<td></td>
<td>(2x = -6)</td>
</tr>
<tr>
<td></td>
<td>Step 5: Divide by 2</td>
</tr>
<tr>
<td></td>
<td>(\div 2 \div 2)</td>
</tr>
<tr>
<td></td>
<td>Result:</td>
</tr>
<tr>
<td></td>
<td>(x = -3)</td>
</tr>
</tbody>
</table>

With this approach, you will be able to solve almost any multi-step equation. As you get better at it, you will be able to use some shortcuts to solve the problem faster. Since speed is important in mathematics, learning a few tips and tricks with regard to solving equations is likely to be worth your time.
Pre-Algebra

Tips and Tricks in Solving Multi-Step Equations

Fractional Coefficients

Fractions present a stumbling block to many students in solving multi-step equations. When stumbling blocks occur, it is a good time to develop a trick to help with the process. The trick shown below involves using the reciprocal of a fractional coefficient as a multiplier in the solution process. (Remember that a coefficient is a number that is multiplied by a variable.)

Example 1

Solve: \(\frac{2}{3}x = 8 \)

Multiply by \(\frac{3}{2} \):

\[
\frac{3}{2} \cdot \frac{2}{3}
\]

Result:

\[
x = \frac{3}{2} \cdot 8 = \frac{24}{2} = 12
\]

Explanation: Since \(\frac{3}{2} \) is the reciprocal of \(\frac{2}{3} \)' when we multiply them, we get 1, and \(1 \cdot x = x \). Using this approach, we can avoid dividing by a fraction, which is more difficult.

Example 2

Solve: \(-\frac{1}{4}x = -2 \)

Multiply by \(-4 \):

\[
\cdot (-4) \cdot (-4)
\]

Result:

\[
x = (-2) \cdot (-4) = 8
\]

Explanation: \(-4 \) is the reciprocal of \(-\frac{1}{4} \), so when we multiply them, we get 1. Notice the use of parentheses around the negative number to make it clear we are multiplying and not subtracting.

Another Approach to Parentheses

In the Reverse PEMDAS method, parentheses are handled after all other operations. Sometimes, it is easier to operate on the parentheses first. In this way, you may be able to re-state the problem in an easier form before solving it.

Example 3, at right, is another look at the problem in Example 2 on the previous page.

Use whichever approach you find most to your liking. They are both correct.

Example 3

Solve: \(2 \cdot (2x + 5) - 3 = -5 \)

Step 1: **Eliminate parentheses**

Result: \(4x + 10 - 3 = -5 \)

Step 2: **Combine constants**

Result: \(4x + 7 = -5 \)

Step 3: **Subtract 7**

Result: \(4x = -12 \)

Step 4: **Divide by 4**

Result: \(x = -3 \)
Pre-Algebra
Solving for a Variable

Sometimes in mathematics and, especially, in science, we are presented with a formula and asked to solve for one of its variables. This kind of problem is an application in solving an equation. The key difference from other equations the student has been asked to solve is that there are usually several variables in the expression.

The Trick

The trick is to treat the variables the same way you would treat numbers. Just pretend they are numbers. You can add, subtract, multiply, divide and more, just like you would numbers. Your goal is to isolate the variable you are solving for.

Example 1: Triangle Perimeter

The formula for the perimeter of a triangle is:

\[P = a + b + c \]

Solve this for \(a \).

Here are the steps:

Start: \[P = a + b + c \]

Subtract \(b \): \[-b - b \]

Result: \[P - b = a + c \]

Subtract \(c \): \[-c - c \]

Result: \[P - b - c = a \]

Switch sides: \[a = P - b - c \]

Example 2: Ideal Gas Law

The Ideal Gas Law states that:

\[PV = nRT \]

Solve this for \(T \).

Here are the steps:

Start: \[PV = nRT \]

Divide by \(n \): \[\div n \div n \]

Result: \[\frac{PV}{n} = RT \]

Divide by \(R \): \[\div R \div R \]

Result: \[\frac{PV}{nR} = T \]

Switch sides: \[T = \frac{PV}{nR} \]

The main difficulty in solving problems with multiple variables is keeping track of all the variables. Here are some tips:

- Take your time and be careful.
- Perform the calculations one at a time and in a logical progression.
- Check your work carefully. If you did your work correctly, you should be able to reverse your steps and derive the original formula from the one in your solution.
Inequality Signs

The following signs are used in inequalities:

- \(<\) – Less than sign. \(a < b\) is read “\(a\) is less than \(b\).”
- \(\leq\) – Less than or equal sign. \(a \leq b\) is read “\(a\) is less than or equal to \(b\).”
- \(>\) – Greater than sign. \(a > b\) is read “\(a\) is greater than \(b\).”
- \(\geq\) – Greater than or equal sign. \(a \geq b\) is read “\(a\) is greater than or equal to \(b\).”

Relationship to Equations

Inequalities are solved in much the same way as equations. There are a couple of differences you should be aware of:

- When you multiply or divide by a negative number, you must flip the sign. That is,
 - "\(<\) becomes "\(>\)"
 - "\(\leq\) becomes "\(\geq\)"
 - "\(>\) becomes "\(<\)"
 - "\(\geq\) becomes "\(\leq\)"
- When you switch sides of an inequality you must flip the sign.

Examples:

<table>
<thead>
<tr>
<th>Example 1:</th>
<th>Example 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve: (x + 4 \leq -1)</td>
<td>Solve: (-3x > 9)</td>
</tr>
<tr>
<td>Subtract 4: (-4) (-4)</td>
<td>Divide by (-3): ((\div -3) \div (-3))</td>
</tr>
<tr>
<td>Result: (x \leq -5)</td>
<td>Flip Sign: (x < -3)</td>
</tr>
</tbody>
</table>

A Trick – Think about the two sides of the inequality signs. The pointy side is small, and the open side is large. Then,

- The smaller expression is on the pointy (smaller) side of the sign.
- The larger expression is on the open (larger) side of the sign.
Inequalities in one dimension are generally graphed on the number line. Alternatively, if it is clear that the graph is one-dimensional, the graphs can be shown in relation to a number line but not specifically on it (examples of this are on the next page).

One-Dimensional Graph Components

- **The endpoint(s)** – The endpoints for the ray or segment in the graph are shown as either open or closed circles.
 - If the point is included in the solution to the inequality (i.e., if the sign is \(\leq \) or \(\geq \)), the circle is closed.
 - If the point is not included in the solution to the inequality (i.e., if the sign is \(<\) or \(>\)), the circle is open.

- **The arrow** – If all numbers in one direction of the number line are solutions to the inequality, an arrow points in that direction.
 - For \(<\) or \(\leq\) signs, the arrow points to the left (\(\leftarrow\)).
 - For \(>\) or \(\geq\) signs, the arrow points to the right (\(\rightarrow\)).

- **The line** – in a simple inequality, a line is drawn from the endpoint to the arrow. If there are two endpoints, a line is drawn from one to the other.

Examples:

- \(x \geq 2\)
- \(x > -5\)
- \(x < 12\)
- \(x \leq -1\)
Compound Inequalities in One Dimension

Compound inequalities are a set of inequalities that must all be true at the same time. Usually, there are two inequalities, but more than two can also form a compound set. The principles described below easily extend to cases where there are more than two inequalities.

Compound Inequalities with the Word “AND”

An example of compound inequalities with the word “AND” would be:

\[
\begin{align*}
\text{Simple Form} & : & x < 12 \quad \text{and} \quad x \geq 2 \\
\text{Compound Form} & : & 2 \leq x < 12
\end{align*}
\]

Graphically, “AND” inequalities exist at points where the graphs of the individual inequalities overlap. This is the “intersection” of the graphs of the individual inequalities. Below are two examples of graphs of compound inequalities using the word “AND.”

A typical “AND” example: The result is a segment that contains the points that overlap the graphs of the individual inequalities.

“AND” compound inequalities sometimes result in the empty set. This happens when no numbers meet both conditions at the same time.

Compound Inequalities with the Word “OR”

Graphically, “OR” inequalities exist at points where any of the original graphs have points. This is the “union” of the graphs of the individual inequalities. Below are two examples of graphs of compound inequalities using the word “OR.”

A typical “OR” example: The result is a pair of rays extending in opposite directions, with a gap in between.

“OR” compound inequalities sometimes result in the set of all numbers. This happens when every number meets at least one of the conditions.
Pre-Algebra

T-Charts

One of the easiest ways to plot a line is to create something called a t-chart. To develop a t-chart,

- Draw a large lower case “t” on your page. Also, draw a set of x and y axes on your page.
- On the t-chart, label the top: “x” on the left and “y” on the right.
- Select a set of at least three x-values; place them on the left hand side of the “t.” Tip: Usually zero is a good choice for x; you may also want to use a negative number and a positive number. However, and three values will work.
- Calculate the corresponding y-values for each x-value.
- Plot the (x,y) ordered pairs on the axes you drew in the first step.
- Draw the line through those points. If the line does not go through all of the points, you have made a mistake; check your work carefully.

Example:

Draw the graph of the line: \(y = 2x - 1 \).

Create a T-chart:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(y = 2(-2) - 1 = -5)</td>
</tr>
<tr>
<td>0</td>
<td>(y = 2(0) - 1 = -1)</td>
</tr>
<tr>
<td>2</td>
<td>(y = 2(2) - 1 = 3)</td>
</tr>
<tr>
<td>4</td>
<td>(y = 2(4) - 1 = 7)</td>
</tr>
</tbody>
</table>

Plot the Points:

Draw the Line:

\(y = 2x - 1 \)
Pre-Algebra
Slope of a Line

The slope of a line tells how fast it rises or falls as it moves from left to right. If the slope is rising, the slope is positive; if it is falling, the slope is negative. The letter “m” is often used as the symbol for slope.

The two most useful ways to calculate the slope of a line are discussed below.

Mathematical Definition of Slope
The definition is based on two points with coordinates \((x_1, y_1)\) and \((x_2, y_2)\). The definition, then, is:

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

Comments:
- You can select any 2 points on the line.
- A table such as the one at right can be helpful for doing your calculations.
- Note that \(m = \frac{y_2 - y_1}{x_2 - x_1}\) implies that \(m = \frac{y_1 - y_2}{x_1 - x_2}\).
 So, it does not matter which point you assign as Point 1 and which you assign as Point 2. Therefore, neither does it matter which point is first in the table.
- It is important that once you assign a point as Point 1 and another as Point 2, that you use their coordinates in the proper places in the formula.

Examples:
For the two lines in the figure above, we get the following:

<table>
<thead>
<tr>
<th>Green Line</th>
<th>x-value</th>
<th>y-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point A</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Point C</td>
<td>-3</td>
<td>-4</td>
</tr>
<tr>
<td>Difference</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Green Line: \(m = \frac{8}{4} = 2\)

<table>
<thead>
<tr>
<th>Red Line</th>
<th>x-value</th>
<th>y-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point D</td>
<td>4</td>
<td>-2</td>
</tr>
<tr>
<td>Point B</td>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>Difference</td>
<td>8</td>
<td>-4</td>
</tr>
</tbody>
</table>

Red Line: \(m = \frac{-4}{8} = -\frac{1}{2}\)
Rise over Run

An equivalent method of calculating slope that is more visual is the “Rise over Run” method. Under this method, it helps to draw vertical and horizontal lines that indicate the horizontal and vertical distances between points on the line.

The slope can then be calculated as follows:

\[
m = \frac{\text{rise}}{\text{run}} = \frac{\text{length of vertical line}}{\text{length of horizontal line}}
\]

The rise of a line is how much it increases (positive) or decreases (negative) between two points. The run is how far the line moves to the right (positive) or the left (negative) between the same two points.

Comments:

• You can select any 2 points on the line.
• It is important to start at the same point in measuring both the rise and the run.
• A good convention is to always start with the point on the left and work your way to the right; that way, the run (i.e., the denominator in the formula) is always positive. The only exception to this is when the run is zero, in which case the slope is undefined.
• If the two points are clearly marked as integers on a graph, the rise and run may actually be counted on the graph. This makes the process much simpler than using the formula for the definition of slope. However, when counting, make sure you get the right sign for the slope of the line, e.g., moving down as the line moves to the right is a negative slope.

Examples:

For the two lines in the figure above, we get the following:

Green Line: \(m = \frac{\text{rise from } (-4) \text{ to } 4}{\text{run from } (-3) \text{ to } 1} = \frac{8}{4} = 2 \)

Red Line: \(m = \frac{\text{fall from } 2 \text{ to } (-2)}{\text{run from } (-4) \text{ to } 4} = \frac{-4}{8} = -\frac{1}{2} \)

Notice how similar the calculations in the examples are under the two methods of calculating slopes.
Pre-Algebra
Slopes of Various Lines

When you look at a line, you should notice the following about its slope:

- Whether it is 0, positive, negative or undefined.
- If positive or negative, whether it is less than 1, about 1, or greater than 1.

The purpose of the graphs on this page is to help you get a feel for these things.

This can help you check:

- Given a slope, whether you drew the line correctly, or
- Given a line, whether you calculated the slope correctly.

\[m = -2 \frac{4}{5} \text{ (big negative)} \]
line is steep and going down

\[m = -1 \]
line goes down at a 45° angle

\[m = -\frac{3}{17} \text{ (small negative)} \]
line is shallow and going down

\[m = 0 \]
line is horizontal

\[m = \frac{2}{11} \text{ (small positive)} \]
line is shallow and going up

\[m = 3 \frac{1}{2} \text{ (big positive)} \]
line is steep and going up

\[m = \text{undefined} \]
line is vertical
There are three forms of a linear equation which are most useful to the Algebra student, each of which can be converted into the other two through algebraic manipulation. The ability to move between forms is a very useful skill in Algebra, and should be practiced by the student.

Standard Form

The **Standard Form** of a linear equation is:

\[Ax + By = C \]

where \(A, B, \) and \(C \) are real numbers and \(A \) and \(B \) are not both zero. Usually in this form, the convention is for \(A \) to be positive.

Why, you might ask, is this “Standard Form?” One reason is that this form is easily extended to additional variables, whereas other forms are not. For example, in four variables, the Standard Form would be: \(Ax + By + Cz + Dw = E \). Another reason is that this form easily lends itself to analysis with matrices, which can be very useful in solving systems of equations.

Slope-Intercept Form

The **Slope-Intercept Form** of a linear equation is the one most familiar to many students. It is:

\[y = mx + b \]

where \(m \) is the slope and \(b \) is the \(y \)-intercept of the line (i.e., the value at which the line crosses the \(y \)-axis in a graph). \(m \) and \(b \) must also be real numbers.

Point-Slope Form

The **Point-Slope Form** of a linear equation is the one used least by the student, but it can be very useful in certain circumstances. In particular, as you might expect, it is useful if the student is asked for the equation of a line and is given the line’s slope and the coordinates of a point on the line. The form of the equation is:

\[(y - y_1) = m(x - x_1) \]

where \(m \) is the slope and \((x_1, y_1)\) is any point on the line. One strength of this form is that equations formed using different points on the same line will be equivalent.
Pre-Algebra
Slopes of Parallel and Perpendicular Lines

Parallel Lines

Two lines are parallel if their slopes are equal.

- In $y = mx + b$ form, if the values of m are the same.
 Example: $y = 2x - 3$ and $y = 2x + 1$
- In Standard Form, if the coefficients of x and y are proportional between the equations.
 Example: $3x - 2y = 5$ and $6x - 4y = -7$
- Also, if the lines are both vertical (i.e., their slopes are undefined).
 Example: $x = -3$ and $x = 2$

Perpendicular Lines

Two lines are perpendicular if the product of their slopes is -1. That is, if the slopes have different signs and are multiplicative inverses.

- In $y = mx + b$ form, the values of m multiply to get -1.
 Example: $y = 6x + 5$ and $y = -\frac{1}{6}x - 3$
- In Standard Form, if you add the product of the x-coefficients to the product of the y-coefficients and get zero.
 Example: $4x + 6y = 4$ and $3x - 2y = 5$ because $(4 \cdot 3) + (6 \cdot (-2)) = 0$
- Also, if one line is vertical (i.e., m is undefined) and one line is horizontal (i.e., $m = 0$).
 Example: $x = 6$ and $y = 3$
Pre-Algebra
Probability and Odds

Probability

Probability is a measure of the likelihood that an event will occur. It depends on the number of outcomes that represent the event and the total number of possible outcomes. In equation terms,

\[
P(\text{event}) = \frac{\text{number of outcomes representing the event}}{\text{number of total possible outcomes}}
\]

Example 1: The probability of a flipped coin landing as a head is 1/2. There are two equally likely events when a coin is flipped – it will show a head or it will show a tail. So, there is one chance out of two that the coin will show a head when it lands.

\[
P(\text{head}) = \frac{1 \text{ outcome of a head}}{2 \text{ total possible outcomes}} = \frac{1}{2}
\]

Example 2: In a jar, there are 15 blue marbles, 10 red marbles and 7 green marbles. What is the probability of selecting a red marble from the jar? In this example, there are 32 total marbles, 10 of which are red, so there is a 10/32 (or, when reduced, 5/16) probability of selecting a red marble.

\[
P(\text{red marble}) = \frac{10 \text{ red marbles}}{32 \text{ total marbles}} = \frac{10}{32} = \frac{5}{16}
\]

Odds

Odds are similar to probability, except that we measure the number of chances that an event will occur relative to the number of chances that the event will not occur.

\[
\text{Odds(\text{event})} = \frac{\text{number of outcomes representing the event}}{\text{number of outcomes NOT representing the event}}
\]

In the above examples,

\[
\text{Odds(\text{head})} = \frac{1 \text{ outcome of a head}}{1 \text{ outcome of a tail}} = \frac{1}{1} \quad \text{Odds(\text{red marble})} = \frac{10 \text{ red marbles}}{22 \text{ other marbles}} = \frac{10}{22} = \frac{5}{11}
\]

- Note that the numerator and the denominator in an odds calculation add to the total number of possible outcomes in the denominator of the corresponding probability calculation.

- To the beginning student, the concept of odds is not as intuitive as the concept of probabilities; however, they are used extensively in some environments.
Pre-Algebra

Probability with Dice

Single Die

Probability with a single die is based on the number of chances of an event out of 6 possible outcomes on the die. For example:

\[P(2) = \frac{1}{6} \quad P(\text{odd number}) = \frac{3}{6} = \frac{1}{2} \quad P(\text{number} < 5) = \frac{4}{6} = \frac{2}{3} \]

Two Dice

Probability with two dice is based on the number of chances of an event out of 36 possible outcomes on the dice. The following table of results when rolling 2 dice is helpful in this regard:

<table>
<thead>
<tr>
<th>1st Die</th>
<th>2nd Die</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2, 3, 4, 5, 6, 7</td>
</tr>
<tr>
<td>2</td>
<td>3, 4, 5, 6, 7, 8</td>
</tr>
<tr>
<td>3</td>
<td>4, 5, 6, 7, 8, 9</td>
</tr>
<tr>
<td>4</td>
<td>5, 6, 7, 8, 9, 10</td>
</tr>
<tr>
<td>5</td>
<td>6, 7, 8, 9, 10, 11</td>
</tr>
<tr>
<td>6</td>
<td>7, 8, 9, 10, 11, 12</td>
</tr>
</tbody>
</table>

The probability of rolling a number with two dice is the number of times that number occurs in the table, divided by 36. Here are the probabilities for all numbers 2 to 12.

\[P(2) = \frac{1}{36} \quad P(5) = \frac{4}{36} = \frac{1}{9} \quad P(8) = \frac{5}{36} \quad P(11) = \frac{2}{36} = \frac{1}{18} \]

\[P(3) = \frac{2}{36} = \frac{1}{18} \quad P(6) = \frac{5}{36} \quad P(9) = \frac{4}{36} = \frac{1}{9} \quad P(12) = \frac{1}{36} \]

\[P(4) = \frac{3}{36} = \frac{1}{12} \quad P(7) = \frac{6}{36} = \frac{1}{6} \quad P(10) = \frac{3}{36} = \frac{1}{12} \]

\[P(\text{odd number}) = \frac{18}{36} = \frac{1}{2} \quad P(\text{number divisible by 3}) = \frac{2+5+4+1}{36} = \frac{12}{36} = \frac{1}{3} \]

\[P(\text{even number}) = \frac{18}{36} = \frac{1}{2} \quad P(\text{number divisible by 4}) = \frac{3+5+1}{36} = \frac{9}{36} = \frac{1}{4} \]

\[P(\text{number divisible by 6}) = \frac{5+1}{36} = \frac{6}{36} = \frac{1}{6} \]
Pre-Algebra
Statistical Measures

Statistical measures help describe a set of data. A definition of a number of these is provided in the table below:

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
<th>Calculation</th>
<th>Example 1</th>
<th>Example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set</td>
<td>Numbers</td>
<td></td>
<td>35, 35, 37, 38, 45</td>
<td>15, 20, 20, 22, 25, 54</td>
</tr>
<tr>
<td>Mean</td>
<td>Average</td>
<td>Add the values and divide the total by the number of values</td>
<td>$\frac{35 + 35 + 37 + 38 + 45}{5} = 38$</td>
<td>$\frac{15 + 18 + 22 + 22 + 25 + 54}{6} = 26$</td>
</tr>
<tr>
<td>Median$^{(1)}$</td>
<td>Middle</td>
<td>Arrange the values from low to high and take the middle value$^{(1)}$</td>
<td>37</td>
<td>21$^{(1)}$</td>
</tr>
<tr>
<td>Mode</td>
<td>Most</td>
<td>The value that appears most often in the data set</td>
<td>35</td>
<td>20</td>
</tr>
<tr>
<td>Range</td>
<td>Size</td>
<td>The difference between the highest and lowest values in the data set</td>
<td>45 – 35 = 10</td>
<td>54 – 15 = 39</td>
</tr>
<tr>
<td>Outliers$^{(2)}$</td>
<td>Oddballs</td>
<td>Values that look very different from the other values in the data set</td>
<td>none</td>
<td>54</td>
</tr>
</tbody>
</table>

Notes:

1. If there are an even number of values, the median is the average of the two middle values. In Example 2, the median is 21, which is the average of 20 and 22.

2. The question of what constitutes an outlier is not always clear. Although statisticians seek to minimize subjectivity in the definition of outliers, different analysts may choose different criteria for the same data set.
A **Stem-and-Leaf Plot** is a way to organize data. It is useful for small sets of data only. For large sets of data, the technique becomes cumbersome. From a stem-and-leaf plot, it is relatively easy to calculate the key statistical values:

- The minimum value.
- The first quartile.
- The median.
- The third quartile.
- The maximum value.

In a stem-and-leaf plot,

- The data are arranged in a two-column chart.
- Each data value is split into two separate parts, a stem and a leaf.
- The stems are placed to the left of the vertical line. In a common version of the plot, the stems are all of the digits of each value except the “ones digit.” A separate row is created for each stem, in numerical order.
- The leaves are placed to the right of the vertical line. In the version of the plot mentioned above, the leaves are the “ones digits” of the values corresponding to each stem. The values in each row are placed in numerical order, separated by commas.
- Often, a key is placed on the plot which illustrates how the individual data are split between the leaf and the stem.

Example: Consider the following data set:

{37, 41, 28, 52, 56, 32, 37, 42, 26, 37, 40, 37, 51, 48}

The stem and leaf plot would be:

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6, 8</td>
</tr>
<tr>
<td>3</td>
<td>2, 7, 7, 7, 7</td>
</tr>
<tr>
<td>4</td>
<td>0, 1, 2, 8</td>
</tr>
<tr>
<td>5</td>
<td>1, 2, 6</td>
</tr>
</tbody>
</table>

Notice that in stem-and-leaf form, the data are ordered. They are also organized in a way that makes calculating statistical measures like the median, mode, first and third quartiles, and range are relatively easy.
A **Box-and-Whisker Plot** is a way to present information about a data set. The following information about a set of data is provided by a box-and-whisker plot:

- The minimum value.
- The first quartile.
- The median.
- The third quartile.
- The maximum value.

A plot with small boxes and big whiskers tells us that the data is spread out, whereas a plot with large boxes and small whiskers tells us that the data is more tightly grouped.

A Few Points about Discreet Data

When data sets consist of a small number of observations, questions arise about the precise definitions of the above terms in some circumstances. In particular,

- **Median:** When values are arranged in order, the median is the middle value. If the number of values is even, there are two middle values; the median is their mean.
- **First Quartile:** The first quartile is the median of the lower half of the values. When there are an odd number of values overall, the median is omitted from this calculation. The first quartile is sometimes referred to as the lower quartile.
- **Third Quartile:** The third quartile is the median of the upper half of the values. When there are an odd number of values overall, the median is omitted from this calculation. The third quartile is sometimes referred to as the upper quartile.

Example:

Create a box-and-whisker plot for the following ordered data set:

\[\{6, 8, 11, 13, 16, 20, 20, 23, 25\} \]

There are 9 values

- Minimum value: 6
- \(Q_1 \) – First quartile: 9.5
- \(Q_2 \) – Median: 16
- \(Q_3 \) – Third quartile: 21.5
- Maximum value: 25
Distance measures how far apart two things are. The distance between two points can be measured in any number of dimensions, and is defined as the length of the line connecting the two points. Distance is always a positive number.

1-Dimensional Distance

In one dimension the distance between two points is determined simply by subtracting the coordinates of the points.

Example: In this segment, the distance between -2 and 5 is calculated as: $5 - (-2) = 7$.

2-Dimensional Distance

In two dimensions, the distance between two points can be calculated by considering the line between them to be the hypotenuse of a right triangle. To determine the length of this line:

- Calculate the difference in the x-coordinates of the points
- Calculate the difference in the y-coordinates of the points
- Use the Pythagorean Theorem.

This process is illustrated below, using the variable “d” for distance.

Example: Find the distance between (-1,1) and (2,5). Based on the illustration to the left:

- x-coordinate difference: $2 - (-1) = 3$.
- y-coordinate difference: $5 - 1 = 4$.

Then, the distance is calculated using the formula: $d^2 = (3^2 + 4^2) = (9 + 16) = 25$

So, $d = 5$

If we define two points generally as (x_1, y_1) and (x_2, y_2), then a 2-dimensional distance formula would be:

$$\text{distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
Geometry

Angles

Parts of an Angle

An angle consists of two rays with a common endpoint (or, initial point).

- Each ray is a side of the angle.
- The common endpoint is called the vertex of the angle.

Naming Angles

Angles can be named in one of two ways:

- **Point-vertex-point method.** In this method, the angle is named from a point on one ray, the vertex, and a point on the other ray. This is the most unambiguous method of naming an angle, and is useful in diagrams with multiple angles sharing the same vertex. In the above figure, the angle shown could be named $\angle BAC$ or $\angle CAB$.

- **Vertex method.** In cases where it is not ambiguous, an angle can be named based solely on its vertex. In the above figure, the angle could be named $\angle A$.

Measure of an Angle

There are two conventions for measuring the size of an angle:

- **In degrees.** The symbol for degrees is $^\circ$. There are 360° in a full circle. The angle above measures approximately 45° (one-eighth of a circle).

- **In radians.** There are 2π radians in a complete circle. The angle above measures approximately $\frac{1}{4}\pi$ radians.

Some Terms Relating to Angles

Angle interior is the area between the rays.

Angle exterior is the area not between the rays.

Adjacent angles are angles that share a ray for a side. $\angle BAD$ and $\angle DAC$ in the figure at right are adjacent angles.

Congruent angles are angles with the same measure.

Angle bisector is a ray that divides the angle into two congruent angles. Ray \overline{AD} bisects $\angle BAC$ in the figure at right.
Pre-Algebra
Types of Angles

Supplementary Angles

Angles A and B are supplementary.
Angles A and B form a linear pair.
\[m\angle A + m\angle B = 180^\circ \]

Complementary Angles

Angles C and D are complementary.
\[m\angle C + m\angle D = 90^\circ \]

Vertical Angles

Angles E and G are vertical angles.
Angles F and H are vertical angles.
\[m\angle E = m\angle G \text{ and } m\angle F = m\angle H \]
In addition, each angle is supplementary to the two angles adjacent to it. For example:
Angle E is supplementary to Angles F and H.

Acute

An acute angle is one that is less than 90\(^\circ\). In the illustration above, angles E and G are acute angles.

A right angle is one that is exactly 90\(^\circ\).

An obtuse angle is one that is greater than 90\(^\circ\). In the illustration above, angles F and H are obtuse angles.

A straight angle is one that is exactly 180\(^\circ\).
Pre-Algebra
Parallel Lines and Transversals

![Diagram of parallel lines and a transversal]

Corresponding Angles

Corresponding Angles are angles in the same location relative to the parallel lines and the transversal. For example, the angles on top of the parallel lines and left of the transversal (*i.e.*, top left) are corresponding angles.

Angles **A** and **E** (top left) are *Corresponding Angles*. So are angle pairs **B** and **F** (top right), **C** and **G** (bottom left), and **D** and **H** (bottom right). Corresponding angles are congruent.

Alternate Interior Angles

Angles **D** and **E** are *Alternate Interior Angles*. Angles **C** and **F** are also alternate interior angles. Alternate interior angles are congruent.

Alternate Exterior Angles

Angles **A** and **H** are *Alternate Exterior Angles*. Angles **B** and **G** are also alternate exterior angles. Alternate exterior angles are congruent.

Consecutive Interior Angles

Angles **C** and **E** are *Consecutive Interior Angles*. Angles **D** and **F** are also consecutive interior angles. Alternate exterior angles are congruent.

*Note that angles **A**, **D**, **E**, and **H** are congruent, and angles **B**, **C**, **F**, and **G** are congruent. In addition, each of the angles in the first group are supplementary to each of the angles in the second group.*
Pre-Algebra
What Makes a Triangle?

A triangle is a closed path with 3 vertices (points), 3 sides and 3 angles. In the triangle at left,

- The vertices are points A, B, and C.
- the sides are \overline{AB}, \overline{BC}, and \overline{CA}.
- The angles are the located inside the triangle at the vertices. They are $\angle A$, $\angle B$, and $\angle C$.

Sizes of Sides

Triangle Inequality: The sum of the lengths of any two sides of a triangle is greater than the length of the third side. This is a crucial element in deciding whether segments of any 3 lengths can form a triangle.

$$a + b > c \quad \text{and} \quad b + c > a \quad \text{and} \quad c + a > b$$

Tip: Another way to look at this is to arrange the sides in order of size, smallest to largest. Then, if the largest side is less than the sum of the other two sides, the three sides make a valid triangle.

Sum of Angles

In a triangle, the sum of the measures of the 3 angles is 180°. In the triangle above left on this page, that means that:

$$m\angle A + \angle B + \angle C = 180^\circ$$

This is a very important fact in Geometry; you will be required to recall this on almost a daily basis in working with triangles.

Congruent Triangles

Two triangles are **congruent** if they have the same exact dimensions. That is, all of the sides are the same length and all of the angles have the same measure. They do not need to be facing the same way, they just need to have the same measures of sides and angles.
Types of Triangles

Scalene
A Scalene Triangle has 3 sides of different lengths. Because the sides are of different lengths, the angles must also be of different measures.

Isosceles
An Isosceles Triangle has 2 sides the same length (i.e., congruent). Because two sides are congruent, two angles must also be congruent.

Equilateral
An Equilateral Triangle has all 3 sides the same length (i.e., congruent). Because all 3 sides are congruent, all 3 angles must also be congruent. This requires each angle to be 60°.

Right
A Right Triangle is one that contains a 90° angle. It may be scalene or isosceles, but cannot be equilateral. Right triangles have sides that meet the requirements of the Pythagorean Theorem.
Pre-Algebra
Pythagorean Theorem

In a right triangle, the Pythagorean Theorem says:

\[a^2 + b^2 = c^2 \]

where,

- \(a \) and \(b \) are the lengths of the legs of a right triangle, and
- \(c \) is the length of the hypotenuse.

Right, Acute, or Obtuse Triangle?

In addition to allowing the solution of right triangles, the Pythagorean Formula can be used to determine whether a triangle is a right triangle, an acute triangle, or an obtuse triangle.

To determine whether a triangle is obtuse, right, or acute:

- Arrange the lengths of the sides from low to high; call them \(a \), \(b \), and \(c \), in increasing order
- Calculate: \(a^2 \), \(b^2 \), and \(c^2 \).
- Compare: \(a^2 + b^2 \) vs. \(c^2 \)
- Use the illustrations below to determine which type of triangle you have.

\[
\begin{align*}
\text{Obtuse Triangle} & : \quad a^2 + b^2 < c^2 \\
\text{Right Triangle} & : \quad a^2 + b^2 = c^2 \\
\text{Acute Triangle} & : \quad a^2 + b^2 > c^2
\end{align*}
\]

Example:
Triangle with sides: 7, 9, 12
\[7^2 + 9^2 \text{ vs. } 12^2 \]
\[49 + 81 < 144 \]
\(\rightarrow \) **Obtuse Triangle**

Example:
Triangle with sides: 6, 8, 10
\[6^2 + 8^2 \text{ vs. } 10^2 \]
\[36 + 64 = 100 \]
\(\rightarrow \) **Right Triangle**

Example:
Triangle with sides: 5, 8, 9
\[5^2 + 8^2 \text{ vs. } 9^2 \]
\[25 + 64 > 81 \]
\(\rightarrow \) **Acute Triangle**
Pre-Algebra

Pythagorean Triples

Pythagorean Theorem: \[a^2 + b^2 = c^2 \]

Pythagorean triples are sets of 3 positive integers that meet the requirements of the Pythagorean Theorem. Because these sets of integers provide “pretty” solutions to geometry problems, they are a favorite of geometry books and teachers. Knowing what triples exist can help the student quickly identify solutions to problems that might otherwise take considerable time to solve.

3-4-5 Triangle Family

Sample Triples

3-4-5
6-8-10
9-12-15
12-16-20
30-40-50

\[3^2 + 4^2 = 5^2 \]

\[9 + 16 = 25 \]

7-24-25 Triangle Family

Sample Triples

7-24-25
14-48-50
21-72-75
... 70-240-250

\[7^2 + 24^2 = 25^2 \]

\[49 + 576 = 625 \]

5-12-13 Triangle Family

Sample Triples

5-12-13
10-24-26
15-36-39
... 50-120-130

\[5^2 + 12^2 = 13^2 \]

\[25 + 144 = 169 \]

8-15-17 Triangle Family

Sample Triples

8-15-17
16-30-34
24-45-51
... 80-150-170

\[8 + 15^2 = 17^2 \]

\[64 + 225 = 289 \]
Pre-Algebra
Ratios and Proportions

Ratios are fractions that relate two items. For example, in baseball, the ratio of the number of a batter’s hit to the number of his at-bats provides his batting average. That is:

\[\frac{\text{hits}}{\text{at bats}} = \text{batting average} \]

Proportions are relationships between ratios. For example, if two batters have the same batting average, then:

\[\frac{\text{Player A "hits"}}{\text{Player A "at bats"}} = \frac{\text{Player B "hits"}}{\text{Player B "at bats"}} \]

So, for example, if we know that Player A has 26 hits in 80 at-bats, and Player B, with the same batting average has 120 at-bats, let’s calculate \(x = \) the number of Player B’s hits.

From the proportion above, we know that:

\[\frac{26}{80} = \frac{x}{120} \]

Proportions are usually solved by cross multiplying. In the example,

\[(26)(120) = (80)(x) \]

\[x = 39 \]

Ratios Involving Units

When simplifying ratios containing the same units:

- Simplify the fraction.
- Notice that the units disappear. They behave just like factors; if the units exist in the numerator and denominator, the cancel and are not in the answer.

When simplifying ratios containing different units:

- Adjust the ratio so that the numerator and denominator have the same units.
- Simplify the fraction.
- Notice that the units disappear.

Example:

\[\frac{3 \text{ inches}}{12 \text{ inches}} = \frac{1}{4} \]

Note: the unit “inches cancel out, so the answer is \(\frac{1}{4} \), not \(\frac{1}{4} \text{ inch} \).
Similar Triangle Parts

In similar triangles,
- Corresponding sides are proportional.
- Corresponding angles are congruent.

In working with similar triangles is crucial to line up corresponding vertices. Once this is done, the rest of the picture becomes clear. In the picture above,
- Point A corresponds to Point D.
- Point B corresponds to Point E.
- Point C corresponds to Point F.

Naming Similar Triangles

Based on the above Correspondences, we can say:

\[\triangle ABC \sim \triangle DEF \quad \text{or} \quad \triangle BCA \sim \triangle EFD \quad \text{or} \quad \triangle CAB \sim \triangle FDE \quad \text{or} \quad \triangle ACB \sim \triangle DFE \quad \text{or} \quad \triangle BAC \sim \triangle EDF \quad \text{or} \quad \triangle CBA \sim \triangle FED \]

All of these are correct because they match corresponding parts in the naming. Each of these similarities implies the following relationships between parts of the two triangles:

Angles: \[\angle A \cong \angle D \quad \text{and} \quad \angle B \cong \angle E \quad \text{and} \quad \angle C \cong \angle F \]

Sides: \[\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} \]

The relationships among the sides of the triangles allow us to calculate information about some of the sides based on information about other sides. For example, if we know that \(AB = 6 \), \(DE = 12 \) and \(CA = 10 \), we can calculate \(x = FD \) as follows:

\[\frac{AB}{DE} = \frac{CA}{FD} \quad \Rightarrow \quad \frac{6}{12} = \frac{10}{x} \]

\[6x = 120 \]

\[x = 20 \]
Pre-Algebra
Proportion Tables for Similar Triangles

Setting Up a Table of Proportions

It is often useful to set up a table to identify the proper proportions in a similarity. Consider the figure to the right. The table might look something like this:

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Left Side</th>
<th>Right Side</th>
<th>Bottom Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Δ</td>
<td>AB</td>
<td>BC</td>
<td>CA</td>
</tr>
<tr>
<td>Bottom Δ</td>
<td>DE</td>
<td>EF</td>
<td>FD</td>
</tr>
</tbody>
</table>

The purpose of a table like this is to organize the information you have about the similar triangles so that you can readily develop the proportions you need.

Developing the Proportions

To develop proportions from the table:

- Extract the columns needed from the table:

\[
\begin{array}{|c|c|}
\hline
AB & BC \\
\hline
DE & EF \\
\hline
\end{array}
\]

- Eliminate the table lines.
- Replace the horizontal lines with “division lines.”
- Put an equal sign between the two resulting fractions:

\[
\frac{AB}{DE} = \frac{BC}{EF}
\]

Solving for the unknown length of a side:

You can extract any two columns you like from the table. Usually, you will have information on lengths of three of the sides and will be asked to calculate a fourth.

Look in the table for the columns that contain the 4 sides in question, and then set up your proportion. Substitute known values into the proportion, and solve for the remaining variable.
Pre-Algebra
Definitions of Quadrilaterals

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadrilateral</td>
<td>A polygon with 4 sides.</td>
</tr>
<tr>
<td>Kite</td>
<td>A quadrilateral with two consecutive pairs of congruent sides, but with opposite sides not congruent.</td>
</tr>
<tr>
<td>Trapezoid</td>
<td>A quadrilateral with exactly one pair of parallel sides.</td>
</tr>
<tr>
<td>Isosceles Trapezoid</td>
<td>A trapezoid with congruent legs.</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>A quadrilateral with both pairs of opposite sides parallel.</td>
</tr>
<tr>
<td>Rectangle</td>
<td>A parallelogram with all angles congruent (i.e., right angles).</td>
</tr>
<tr>
<td>Rhombus</td>
<td>A parallelogram with all sides congruent.</td>
</tr>
<tr>
<td>Square</td>
<td>A quadrilateral with all sides congruent and all angles congruent.</td>
</tr>
</tbody>
</table>

Quadrilateral Tree:

```
Quadrilateral
  /   \
Kite   Parallelogram
      /  \
     Rectangle  Rhombus

      /  \
     Square
```

```
Trapezoid
  /   \
    Isosceles Trapezoid
```

April 6, 2022
Pre-Algebra

Figures of Quadrilaterals

Kite
- 2 consecutive pairs of congruent sides
- 1 pair of congruent opposite angles
- Diagonals perpendicular

Trapezoid
- 1 pair of parallel sides (called “bases”)
- Angles on the same “side” of the bases are supplementary

Isosceles Trapezoid
- 1 pair of parallel sides
- Congruent legs
- 2 pair of congruent base angles
- Diagonals congruent

Parallelogram
- Both pairs of opposite sides parallel
- Both pairs of opposite sides congruent
- Both pairs of opposite angles congruent
- Consecutive angles supplementary
- Diagonals bisect each other

Rectangle
- Parallelogram with all angles congruent (i.e., right angles)
- Diagonals congruent

Rhombus
- Parallelogram with all sides congruent
- Diagonals perpendicular
- Each diagonal bisects a pair of opposite angles

Square
- Both a Rhombus and a Rectangle
- All angles congruent (i.e., right angles)
- All sides congruent
Pre-Algebra
Characteristics of Parallelograms

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Square</th>
<th>Rhombus</th>
<th>Rectangle</th>
<th>Parallelogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 pair of parallel sides</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opposite sides are congruent</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opposite angles are congruent</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Consecutive angles are supplementary</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Diagonals bisect each other</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>All 4 angles are congruent (i.e., right angles)</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Diagonals are congruent</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>All 4 sides are congruent</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagonals are perpendicular</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each diagonal bisects a pair of opposite angles</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Red ✓-marks are conditions sufficient to prove the quadrilateral is of the type specified. Green ✓-marks are conditions sufficient to prove the quadrilateral is of the type specified if the quadrilateral is a parallelogram.
Facts about a Kite

To prove a quadrilateral is a kite, prove:

- It has two pairs of congruent sides.
- Opposite sides are not congruent.

Also, if a quadrilateral is a kite, then:

- Its diagonals are perpendicular.
- It has exactly one pair of congruent opposite angles.

Parts of a Trapezoid

Trapezoid ABCD has the following parts:

- \(\overline{AD} \) and \(\overline{BC} \) are bases.
- \(\overline{AB} \) and \(\overline{CD} \) are legs.
- \(\overline{EF} \) is the midsegment.
- \(\overline{AC} \) and \(\overline{BD} \) are diagonals.
- Angles A and D form a pair of base angles.
- Angles B and C form a pair of base angles.

Trapezoid Midsegment Theorem

The midsegment of a trapezoid is parallel to each of its bases and:

\[
EF = \frac{1}{2} (AD + BC).
\]

Proving a Quadrilateral is an Isosceles Trapezoid

To prove a quadrilateral is an isosceles trapezoid, prove any of the following conditions:

1. It is a trapezoid and has a pair of congruent legs. (definition of isosceles trapezoid)
2. It is a trapezoid and has a pair of congruent base angles.
3. It is a trapezoid and its diagonals are congruent.
Pre-Algebra
Introduction to Transformation

A **Transformation** is a mapping of the pre-image of a geometric figure onto an image that retains key characteristics of the pre-image.

Definitions

The **Pre-Image** is the geometric figure before it has been transformed.

The **Image** is the geometric figure after it has been transformed.

A **mapping** is an association between objects. Transformations are types of mappings. In the figures below, we say $ABCD$ is mapped onto $A'B'C'D'$, or $ABCD \rightarrow A'B'C'D'$. The order of the vertices is critical to a properly named mapping.

An **Isometry** is a one-to-one mapping that preserves lengths. Transformations that are isometries (i.e., preserve length) are called **rigid transformations**.

Isometric Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Reflection</th>
<th>Rotation</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflection</td>
<td>is flipping a figure across a line called a “mirror.” The figure retains its size and shape, but appears “backwards” after the reflection.</td>
<td>is turning a figure around a point. Rotated figures retain their size and shape, but not their orientation.</td>
<td>is sliding a figure in the plane so that it changes location but retains its shape, size and orientation.</td>
</tr>
</tbody>
</table>

Table of Characteristics of Isometric Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Reflection</th>
<th>Rotation</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isometry (Retains Lengths)?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Retains Angles?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Retains Orientation to Axes?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Pre-Algebra
Introduction to Transformation (cont’d)

Transformation of a Point
A point is the easiest object to transform. Simply reflect, rotate or translate it following the rules for the transformation selected. By transforming key points first, any transformation becomes much easier.

Transformation of a Geometric Figure
To transform any geometric figure, it is only necessary to transform the items that define the figure, and then re-form it. For example:

- To transform a line segment, transform its two endpoints, and then connect the resulting images with a line segment.
- To transform a ray, transform the initial point and any other point on the ray, and then construct a ray using the resulting images.
- To transform a line, transform any two points on the line, and then fit a line through the resulting images.
- To transform a polygon, transform each of its vertices, and then connect the resulting images with line segments.
- To transform a circle, transform its center and, if necessary, its radius. From the resulting images, construct the image circle.
- To transform other conic sections (parabolas, ellipses and hyperbolas), transform the foci, vertices and/or directrix. From the resulting images, construct the image conic section.

Example: Reflect Quadrilateral ABCD
Definitions

Reflection is flipping a figure across a mirror.

The **Line of Reflection** is the mirror through which the reflection takes place.

Note that:
- The line segment connecting corresponding points in the image and pre-image is bisected by the mirror.
- The line segment connecting corresponding points in the image and pre-image is perpendicular to the mirror.

Reflection through an Axis or the Line \(y = x \)

Reflection of the point \((a, b)\) through the \(x\)- or \(y\)-axis or the line \(y = x\) gives the following results:

<table>
<thead>
<tr>
<th>Pre-Image Point</th>
<th>Mirror Line</th>
<th>Image Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>(x)-axis</td>
<td>((a, -b))</td>
</tr>
<tr>
<td>((a, b))</td>
<td>(y)-axis</td>
<td>((-a, b))</td>
</tr>
<tr>
<td>((a, b))</td>
<td>the line: (y = x)</td>
<td>((-a, -b))</td>
</tr>
</tbody>
</table>

If you forget the above table, start with the point \((3, 2)\) on a set of coordinate axes. Reflect the point through the selected line and see which set of “a, b” coordinates works.

Line of Symmetry

A **Line of Symmetry** is any line through which a figure can be mapped onto itself. The thin black lines in the following figures show their axes of symmetry:
Pre-Algebra
Rotation

Definitions

Rotation is turning a figure by an angle about a fixed point.

The Center of Rotation is the point about which the figure is rotated. Point \(P \), at right, is the center of rotation.

The Angle of Rotation determines the extent of the rotation. The angle is formed by the rays that connect the center of rotation to the pre-image and the image of the rotation. Angle \(P \), at right, is the angle of rotation. Though shown only for Point \(A \), the angle is the same for any of the figure’s 4 vertices.

Note: In performing rotations, it is important to indicate the direction of the rotation – clockwise or counterclockwise.

Rotation about the Origin

Rotation of the point \((a, b)\) about the origin \((0, 0)\) gives the following results:

<table>
<thead>
<tr>
<th>Pre-Image Point</th>
<th>Clockwise Rotation</th>
<th>Counterclockwise Rotation</th>
<th>Image Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>((a, b))</td>
<td>90°</td>
<td>270°</td>
<td>((b, -a))</td>
</tr>
<tr>
<td>((a, b))</td>
<td>180°</td>
<td>180°</td>
<td>((-a, -b))</td>
</tr>
<tr>
<td>((a, b))</td>
<td>270°</td>
<td>90°</td>
<td>((-b, a))</td>
</tr>
<tr>
<td>((a, b))</td>
<td>360°</td>
<td>360°</td>
<td>((a, b))</td>
</tr>
</tbody>
</table>

If you forget the above table, start with the point \((3, 2)\) on a set of coordinate axes. Rotate the point by the selected angle and see which set of “a, b” coordinates works.

Rotational Symmetry

A figure in a plane has Rotational Symmetry if it can be mapped onto itself by a rotation of 180° or less. Any regular polygon has rotational symmetry, as does a circle. Here are some examples of figures with rotational symmetry:
Pre-Algebra
Translation

Definitions

Translation is sliding a figure in the plane. Each point in the figure is moved the same distance in the same direction. The result is an image that looks the same as the pre-image in every way, except it has been moved to a different location in the plane.

Each of the four orange line segments in the figure at right has the same length and direction.

When Two Reflections = One Translation

If two mirrors are parallel, then reflection through one of them, followed by a reflection through the second is a translation.

In the figure at right, the black lines show the paths of the two reflections; this is also the path of the resulting translation. Note the following:

- The distance of the resulting translation (e.g., from \(A\) to \(A''\)) is double the distance between the mirrors.
- The black lines of movement are perpendicular to both mirrors.

Defining Translations in the Coordinate Plane (Using Vectors)

A translation moves each point by the same distance in the same direction. In the coordinate plane, this is equivalent to moving each point the same amount in the \(x\)-direction and the same amount in the \(y\)-direction. This combination of \(x\)- and \(y\)-direction movement is described by a mathematical concept called a **vector**.

In the above figure, translation from \(A\) to \(A''\) moves **10** in the \(x\)-direction and the **-3** in the \(y\)-direction. In vector notation, this is: \(\overline{AA''} = (10, -3)\). Notice the “half-ray” symbol over the two points and the funny-looking brackets around the movement values.

So, the translation resulting from the two reflections in the above figure moves each point of the pre-image by the vector \(\overline{AA''}\). Every translation can be defined by the vector representing its movement in the coordinate plane.
Pre-Algebra
Compositions

When multiple transformations are combined, the result is called a **Composition of the Transformations**. Two examples of this are:

- Combining two reflections through parallel mirrors to generate a translation (see the previous page).
- Combining a translation and a reflection to generate what is called a **glide reflection**. The glide part of the name refers to translation, which is a kind of gliding of a figure on the plane.

Note: In a glide reflection, if the line of reflection is parallel to the direction of the translation, it does not matter whether the reflection or the translation is performed first.

![Figure 1: Translation followed by Reflection.](image1)

![Figure 2: Reflection followed by Translation.](image2)

Composition Theorem

The composition of multiple isometries is as Isometry. Put more simply, if transformations that preserve length are combined, the composition will preserve length. This is also true of compositions of transformations that preserve angle measure.

Order of Composition

Order matters in most compositions that involve more than one class of transformation. If you apply multiple transformations of the same kind (e.g., reflection, rotation, or translation), order generally does not matter; however, applying transformations in more than one class may produce different final images if the order is switched.
Pre-Algebra
Polygons - Basics

Basic Definitions

Polygon: a closed path of three or more line segments, where:
- no two sides with a common endpoint are collinear, and
- each segment is connected at its endpoints to exactly two other segments.

Side: a segment that is connected to other segments (which are also sides) to form a polygon.

Vertex: a point at the intersection of two sides of the polygon. (plural form: vertices)

Diagonal: a segment, from one vertex to another, which is not a side.

Concave: A polygon in which it is possible to draw a diagonal “outside” the polygon. (Notice the orange diagonal drawn outside the polygon at right.) Concave polygons actually look like they have a “cave” in them.

Convex: A polygon in which it is not possible to draw a diagonal “outside” the polygon. (Notice that all of the orange diagonals are inside the polygon at right.) Convex polygons appear more “rounded” and do not contain “caves.”

Names of Some Common Polygons

<table>
<thead>
<tr>
<th>Number of Sides</th>
<th>Name of Polygon</th>
<th>Number of Sides</th>
<th>Name of Polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Triangle</td>
<td>9</td>
<td>Nonagon</td>
</tr>
<tr>
<td>4</td>
<td>Quadrilateral</td>
<td>10</td>
<td>Decagon</td>
</tr>
<tr>
<td>5</td>
<td>Pentagon</td>
<td>11</td>
<td>Undecagon</td>
</tr>
<tr>
<td>6</td>
<td>Hexagon</td>
<td>12</td>
<td>Dodecagon</td>
</tr>
<tr>
<td>7</td>
<td>Heptagon</td>
<td>20</td>
<td>Icosagon</td>
</tr>
<tr>
<td>8</td>
<td>Octagon</td>
<td>n</td>
<td>n-gon</td>
</tr>
</tbody>
</table>

Names of polygons are generally formed from the Greek language; however, some hybrid forms of Latin and Greek (e.g., undecagon) have crept into common usage.
Pre-Algebra
Polygons – More Definitions

Definitions

Equilateral: a polygon in which all of the sides are equal in length.

Equiangular: a polygon in which all of the angles have the same measure.

Regular: a polygon which is both equilateral and equiangular. That is, a *regular polygon* is one in which all of the sides have the same length and all of the angles have the same measure.

Interior Angle: An angle formed by two sides of a polygon. The angle is inside the polygon.

Exterior Angle: An angle formed by one side of a polygon and the line containing an adjacent side of the polygon. The angle is outside the polygon.

How Many Diagonals Does a Convex Polygon Have?

Believe it or not, this is a common question with a simple solution. Consider a polygon with \(n \) sides and, therefore, \(n \) vertices.

- Each of the \(n \) vertices of the polygon can be connected to \((n - 3) \) other vertices with diagonals. That is, it can be connected to all other vertices except itself and the two to which it is connected by sides. So, there are \(n \cdot (n - 3) \) lines to be drawn as diagonals.
- However, when we do this, we draw each diagonal twice because we draw it once from each of its two endpoints. So, the number of diagonals is actually half of the number we calculated above.
- Therefore, the number of diagonals in an \(n \)-sided polygon is:

\[
\frac{n \cdot (n - 3)}{2}
\]
Pre-Algebra
Interior and Exterior Angles of a Polygon

Interior Angles

The sum of the interior angles in an \(n \)-sided polygon is:

\[
\sum = (n - 2) \cdot 180^\circ
\]

If the polygon is regular, you can calculate the measure of each interior angle as:

\[
\frac{(n-2) \cdot 180^\circ}{n}
\]

Notation: The Greek letter “\(\Sigma \)” is equivalent to the English letter “\(S \)” and is math short-hand for a summation (i.e., addition) of things.

<table>
<thead>
<tr>
<th>Sides</th>
<th>Sum of Interior Angles</th>
<th>Each Interior Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>180°</td>
<td>60°</td>
</tr>
<tr>
<td>4</td>
<td>360°</td>
<td>90°</td>
</tr>
<tr>
<td>5</td>
<td>540°</td>
<td>108°</td>
</tr>
<tr>
<td>6</td>
<td>720°</td>
<td>120°</td>
</tr>
<tr>
<td>7</td>
<td>900°</td>
<td>129°</td>
</tr>
<tr>
<td>8</td>
<td>1,080°</td>
<td>135°</td>
</tr>
<tr>
<td>9</td>
<td>1,260°</td>
<td>140°</td>
</tr>
<tr>
<td>10</td>
<td>1,440°</td>
<td>144°</td>
</tr>
</tbody>
</table>

Exterior Angles

No matter how many sides there are in a polygon, the sum of the exterior angles is:

\[
\sum = 360^\circ
\]

If the polygon is regular, you can calculate the measure of each exterior angle as:

\[
\frac{360^\circ}{n}
\]

<table>
<thead>
<tr>
<th>Sides</th>
<th>Sum of Exterior Angles</th>
<th>Each Exterior Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>360°</td>
<td>120°</td>
</tr>
<tr>
<td>4</td>
<td>360°</td>
<td>90°</td>
</tr>
<tr>
<td>5</td>
<td>360°</td>
<td>72°</td>
</tr>
<tr>
<td>6</td>
<td>360°</td>
<td>60°</td>
</tr>
<tr>
<td>7</td>
<td>360°</td>
<td>51°</td>
</tr>
<tr>
<td>8</td>
<td>360°</td>
<td>45°</td>
</tr>
<tr>
<td>9</td>
<td>360°</td>
<td>40°</td>
</tr>
<tr>
<td>10</td>
<td>360°</td>
<td>36°</td>
</tr>
</tbody>
</table>
Perimeter and Area of a Triangle

Perimeter of a Triangle

The perimeter of a triangle is simply the sum of the measures of the three sides of the triangle.

\[P = a + b + c \]

Area of a Triangle

There are two formulas for the area of a triangle, depending on what information about the triangle is available.

Formula 1: The formula most familiar to the student can be used when the base and height of the triangle are either known or can be determined.

\[A = \frac{1}{2} bh \]

where, \(b \) is the length of the base of the triangle.

\(h \) is the height of the triangle.

Note: The base can be any side of the triangle. The height is the measure of the altitude of whichever side is selected as the base. So, you can use:

\[\text{or} \]

\[\text{or} \]

Formula 2: Another formula for the area of a triangle can be used when the lengths of all of the sides are known. Sometimes this formula, though less appealing, can be very useful.

\[A = \sqrt{s(s - a)(s - b)(s - c)} \]

where, \(s = \frac{1}{2} P = \frac{1}{2} (a + b + c) \). **Note:** \(s \) is sometimes called the semi-perimeter of the triangle

\(a, b, c \) are the lengths of the sides of the triangle.
Pre-Algebra
Perimeter and Area of Quadrilaterals

<table>
<thead>
<tr>
<th>Name</th>
<th>Illustration</th>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kite</td>
<td></td>
<td>$P = 2a + 2b$</td>
<td>$A = \frac{1}{2}(d_1 d_2)$</td>
</tr>
<tr>
<td>Trapezoid</td>
<td></td>
<td>$P = b_1 + b_2 + a + c$</td>
<td>$A = \frac{1}{2}(b_1 + b_2)h$</td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td>$P = 2a + 2b$</td>
<td>$A = bh$</td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td>$P = 2a + 2b$</td>
<td>$A = bh$</td>
</tr>
<tr>
<td>Rhombus</td>
<td></td>
<td>$P = 4s$</td>
<td>$A = bh = \frac{1}{2}(d_1 d_2)$</td>
</tr>
<tr>
<td>Square</td>
<td></td>
<td>$P = 4s$</td>
<td>$A = s^2 = \frac{1}{2}(d^2)$</td>
</tr>
</tbody>
</table>
Circumference and Area

\[C = 2\pi \cdot r \] is the circumference (i.e., the perimeter) of the circle.
\[A = \pi r^2 \] is the area of the circle.

where: \(r \) is the radius of the circle.

Length of an Arc on a Circle

A common problem in the geometry of circles is to measure the length of an arc on a circle.

Definition: An arc is a segment along the circumference of a circle.

\[\text{arc length} = \frac{m\angle AB}{360} \cdot C \]

where: \(m\angle AB \) is the measure (in degrees) of the arc. Note that this is also the measure of the central angle \(\angle AOB \).
\(C \) is the circumference of the circle.

Area of a Sector of a Circle

Another common problem in the geometry of circles is to measure the area of a sector a circle.

Definition: A sector is a region in a circle that is bounded by two radii and an arc of the circle.

\[\text{sector area} = \frac{m\angle AB}{360} \cdot A \]

where: \(m\angle AB \) is the measure (in degrees) of the arc. Note that this is also the measure of the central angle \(\angle AOB \).
\(A \) is the area of the circle.
Pre-Algebra
Prisms

Definitions

- A **Prism** is a polyhedron with two congruent polygonal faces that lie in parallel planes.
- The **Bases** are the parallel polygonal faces.
- The **Lateral Faces** are the faces that are not bases.
- The **Lateral Edges** are the edges between the lateral faces.
- The **Slant Height** is the length of a lateral edge. Note that all lateral edges are the same length.
- The **Height** is the perpendicular length between the bases.

- A **Right Prism** is one in which the angles between the bases and the lateral edges are right angles. Note that in a right prism, the height and the slant height are the same.
- An **Oblique Prism** is one that is not a right prism.

- The **Surface Area** of a prism is the sum of the areas of all its faces.
- The **Lateral Area** of a prism is the sum of the areas of its lateral faces.

Surface Area and Volume of a Right Prism

\[
\text{Surface Area: } SA = Ph + 2B \\
\text{Lateral SA: } SA = Ph \\
\text{Volume: } V = Bh
\]

where, \(P = \text{the perimeter of the base} \)

\(h = \text{the height of the prism} \)

\(B = \text{the area of the base} \)

Cavalieri’s Principle

If two solids have the same height and the same cross-sectional area at every level, then they have the same volume. This principle allows us to derive a formula for the volume of an oblique prism from the formula for the volume of a right prism.

Surface Area and Volume of an Oblique Prism

\[
\text{Surface Area: } SA = Ps + 2B \\
\text{Lateral SA: } SA = Ps \\
\text{Volume: } V = Bh
\]

where, \(P = \text{the perimeter of the base} \)

\(s = \text{the slant height of the prism} \)

\(h = \text{the height of the prism} \)

\(B = \text{the area of the base} \)
Definitions

- A **Cylinder** is a figure with two congruent circular bases in parallel planes.
- A cylinder has only one **Lateral Surface**. When deconstructed, the lateral surface of a cylinder is a rectangle with length equal to the circumference of the base.
- There are no **Lateral Edges** in a cylinder.
- The **Slant Height** is the length of the lateral side between the bases. Note that all lateral distances are the same length. The slant height has applicability only if the cylinder is oblique.
- The **Height** is the perpendicular length between the bases.
- A **Right Cylinder** is one in which the angles between the bases and the lateral side are right angles. Note that in a right cylinder, the height and the slant height are the same.
- An **Oblique Cylinder** is one that is not a right cylinder.
- The **Surface Area** of a cylinder is the sum of the areas of its bases and its lateral surface.
- The **Lateral Area** of a cylinder is the areas of its lateral surface.

Surface Area and Volume of a Right Cylinder

Surface Area: \(SA = Ch + 2B \)
\[= 2\pi rh + 2\pi r^2 \]

Lateral SA: \(SA = Ch = 2\pi rh \)

Volume: \(V = Bh = \pi r^2 h \)

Surface Area and Volume of an Oblique Prism

Surface Area: \(SA = Cs + 2B \)
\[= 2\pi rs + 2\pi r^2 \]

Lateral SA: \(SA = Cs = 2\pi rs \)

Volume: \(V = Bh = \pi r^2 h \)
Pre-Algebra
Surface Area by Decomposition

Sometimes the student is asked to calculate the surface area of a prism that does not quite fit into one of the categories for which an easy formula exists. In this case, the answer may be to decompose the prism into its component shapes, and then calculate the areas of the components. Note: this process also works with cylinders and pyramids.

Decomposition of a Prism

To calculate the surface area of a prism, decompose it and look at each of the prism’s faces individually.

Example: Calculate the surface area of the triangular prism at right.

To do this, first notice that we need the value of the hypotenuse of the base. Use the Pythagorean Theorem or Pythagorean Triples to determine the missing value is 10. Then, decompose the figure into its various faces:

The surface area, then, is calculated as:

\[
SA = (2 \text{ Bases}) + (\text{Front}) + (\text{Back}) + (\text{Side})
\]

\[
SA = 2 \cdot \left(\frac{1}{2} \cdot 6 \cdot 8\right) + (10 \cdot 7) + (8 \cdot 7) + (6 \cdot 7) = 216
\]

Decomposition of a Cone

The cylinder at right is decomposed into two circles (the bases) and a rectangle (the lateral face).

The surface area, then, is calculated as:

\[
SA = (2 \text{ tops}) + (\text{lateral face})
\]

\[
SA = 2 \cdot (\pi \cdot 3^2) + (6\pi \cdot 5) = 48\pi \approx 150.80
\]
Pre-Algebra

Pyramids

- A **Pyramid** is a polyhedron in which the base is a polygon and the lateral sides are triangles with a common vertex.
- The **Base** is a polygon of any size or shape.
- The **Lateral Faces** are the faces that are not the base.
- The **Lateral Edges** are the edges between the lateral faces.
- The **Apex** of the pyramid is the intersection of the lateral edges. It is the point at the top of the pyramid.
- The **Slant Height** of a regular pyramid is the altitude of one of the lateral faces.
- The **Height** is the perpendicular length between the base and the apex.

- A **Regular Pyramid** is one in which the lateral faces are congruent triangles. The height of a regular pyramid intersects the base at its center.
- An **Oblique Pyramid** is one that is not a right pyramid. That is, the apex is not aligned directly above the center of the base.

- The **Surface Area** of a pyramid is the sum of the areas of all its faces.
- The **Lateral Area** of a pyramid is the sum of the areas of its lateral faces.

Surface Area and Volume of a Regular Pyramid

- **Surface Area**: \(SA = \frac{1}{2} Ps + B \)
- **Lateral SA**: \(SA = \frac{1}{2} Ps \)
- **Volume**: \(V = \frac{1}{3} Bh \)

Surface Area and Volume of an Oblique Pyramid

- **Surface Area**: \(SA = LSA + B \)
- **Volume**: \(V = \frac{1}{3} Bh \)

where,
- \(P = \text{the perimeter of the base} \)
- \(s = \text{the slant height of the pyramid} \)
- \(h = \text{the height of the pyramid} \)
- \(B = \text{the area of the base} \)

The lateral surface area of an oblique pyramid is the sum of the areas of the faces, which must be calculated individually.
Pre-Algebra

Cones

Definitions

• A Circular Cone is a 3-dimensional geometric figure with a circular base which tapers smoothly to a vertex (or apex). The apex and base are in different planes. Note: there is also an elliptical cone that has an ellipse as a base, but that will not be considered here.
• The Base is a circle.
• The Lateral Surface is area of the figure between the base and the apex.
• There are no Lateral Edges in a cone.
• The Apex of the cone is the point at the top of the cone.
• The Slant Height of a cone is the length along the lateral surface from the apex to the base.
• The Height is the perpendicular length between the base and the apex.

• A Right Cone is one in which the height of the cone intersects the base at its center.
• An Oblique Cone is one that is not a right cone. That is, the apex is not aligned directly above the center of the base.

• The Surface Area of a cone is the sum of the area of its lateral surface and its base.
• The Lateral Area of a cone is the area of its lateral surface.

Surface Area and Volume of a Right Cone

\[
\begin{align*}
\text{Surface Area:} & \quad SA = \pi rs + \pi r^2 \\
\text{Lateral SA:} & \quad SA = \pi rs \\
\text{Volume:} & \quad V = \frac{1}{3} Bh = \frac{1}{3} \pi r^2 h
\end{align*}
\]

where, \(r \) = the radius of the base
\(s \) = the slant height of the cone
\(h \) = the height of the cone
\(B \) = the area of the base

Surface Area and Volume of an Oblique Cone

\[
\begin{align*}
\text{Surface Area:} & \quad SA = LSA + \pi r^2 \\
\text{Volume:} & \quad V = \frac{1}{3} Bh = \frac{1}{3} \pi r^2 h
\end{align*}
\]

where, \(LSA \) = the lateral surface area
\(r \) = the radius of the base
\(h \) = the height of the cone

There is no easy formula for the lateral surface area of an oblique cone.
Definitions

- A **Sphere** is a 3-dimensional geometric figure in which all points are a fixed distance from a point. A good example of a sphere is a ball.

- **Center** – the middle of the sphere. All points on the sphere are the same distance from the center.

- **Radius** – a line segment with one endpoint at the center and the other endpoint on the sphere. The term “radius” is also used to refer to the distance from the center to the points on the sphere.

- **Diameter** – a line segment with endpoints on the sphere that passes through the center.

- **Great Circle** – the intersection of a plane and a sphere that passes through the center.

- **Hemisphere** – half of a sphere. A great circle separates a plane into two hemispheres.

- **Secant Line** – a line that intersects the sphere in exactly one point.

- **Tangent Line** – a line that intersects the sphere in exactly two points.

- **Chord** – a line segment with endpoints on the sphere that does not pass through the center.

Surface Area and Volume of a Sphere

\[
\text{Surface Area: } \quad SA = 4\pi r^2 \\
\text{Volume: } \quad V = \frac{4}{3}\pi r^3
\]

where, \(r \) = the radius of the sphere
Geometry

Summary of Perimeter and Area Formulas – 2D Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>Figure</th>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kite</td>
<td></td>
<td>$P = 2b + 2c$</td>
<td>$A = \frac{1}{2}(d_1d_2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b, c = \text{sides}$</td>
<td>$d_1, d_2 = \text{diagonals}$</td>
</tr>
<tr>
<td>Trapezoid</td>
<td></td>
<td>$P = b_1 + b_2 + c + d$</td>
<td>$A = \frac{1}{2}(b_1 + b_2)h$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b_1, b_2 = \text{bases}$</td>
<td>$b_1, b_2 = \text{bases}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$c, d = \text{sides}$</td>
<td>$h = \text{height}$</td>
</tr>
<tr>
<td>Parallelogram</td>
<td></td>
<td>$P = 2b + 2c$</td>
<td>$A = bh$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b, c = \text{sides}$</td>
<td>$b = \text{base}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$h = \text{height}$</td>
</tr>
<tr>
<td>Rectangle</td>
<td></td>
<td>$P = 2b + 2c$</td>
<td>$A = bh = \frac{1}{2}(d_1d_2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b, c = \text{sides}$</td>
<td>$d_1, d_2 = \text{diagonals}$</td>
</tr>
<tr>
<td>Rhombus</td>
<td></td>
<td>$P = 4s$</td>
<td>$A = bh = \frac{1}{2}(d_1d_2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$s = \text{side}$</td>
<td>$d_1, d_2 = \text{diagonals}$</td>
</tr>
<tr>
<td>Square</td>
<td></td>
<td>$P = 4s$</td>
<td>$A = s^2 = \frac{1}{2}(d_1d_2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$s = \text{side}$</td>
<td>$d_1, d_2 = \text{diagonals}$</td>
</tr>
<tr>
<td>Regular Polygon</td>
<td></td>
<td>$P = ns$</td>
<td>$A = \frac{1}{2}a \cdot P$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$n = \text{number of sides}$</td>
<td>$a = \text{apothem}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$s = \text{side}$</td>
<td>$P = \text{perimeter}$</td>
</tr>
<tr>
<td>Circle</td>
<td></td>
<td>$C = 2\pi r = \pi d$</td>
<td>$A = \pi r^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r = \text{radius}$</td>
<td>$r = \text{radius}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$d = \text{diameter}$</td>
<td></td>
</tr>
<tr>
<td>Ellipse</td>
<td></td>
<td>$P \approx 2\pi r = \frac{1}{2}(r_1^2 + r_2^2)$</td>
<td>$A = \pi r_1r_2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r_1 = \text{major axis radius}$</td>
<td>$r_1 = \text{major axis radius}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r_2 = \text{minor axis radius}$</td>
<td>$r_2 = \text{minor axis radius}$</td>
</tr>
</tbody>
</table>
Geometry

Summary of Surface Area and Volume Formulas – 3D Shapes

<table>
<thead>
<tr>
<th>Shape</th>
<th>Figure</th>
<th>Surface Area</th>
<th>Volume</th>
</tr>
</thead>
</table>
| Sphere | ![Sphere](image) | $SA = 4\pi r^2$
$r = \text{radius}$ | $V = \frac{4}{3}\pi r^3$
$r = \text{radius}$ |
| Right Cylinder | ![Right Cylinder](image) | $SA = 2\pi rh + 2\pi r^2$
$h = \text{height}
 r = \text{radius of base}$ | $V = \pi r^2h$
$h = \text{height}
 r = \text{radius of base}$ |
| Cone | ![Cone](image) | $SA = \pi rl + \pi r^2$
$l = \text{slant height}
 r = \text{radius of base}$ | $V = \frac{1}{3}\pi r^2h$
$h = \text{height}
 r = \text{radius of base}$ |
| Square Pyramid | ![Square Pyramid](image) | $SA = 2sl + s^2$
$s = \text{base side length}
 l = \text{slant height}$ | $V = \frac{1}{3}s^2h$
$s = \text{base side length}
 h = \text{height}$ |
| Rectangular Prism| ![Rectangular Prism](image) | $SA = 2 \cdot (lw + lh + wh)$
l = \text{length}
 w = \text{width}
 h = \text{height}$ | $V = lwh$
l = \text{length}
 w = \text{width}
 h = \text{height}$ |
| Cube | ![Cube](image) | $SA = 6s^2$
$s = \text{side length (all sides)}$ | $V = s^3$
$s = \text{side length (all sides)}$ |
| General Right Prism | ![General Right Prism](image) | $SA = Ph + 2B$
P = Perimeter of Base
$h = \text{height (or length)}
 B = \text{area of Base}$ | $V = Bh$
$B = \text{area of Base}
 h = \text{height}$ |
Addition Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>
Multiplication Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Addition Table</td>
</tr>
<tr>
<td>21</td>
<td>Algebraic Properties</td>
</tr>
<tr>
<td></td>
<td>Angles</td>
</tr>
<tr>
<td>67</td>
<td>Angles - Basic</td>
</tr>
<tr>
<td>68</td>
<td>Angles - Types</td>
</tr>
<tr>
<td></td>
<td>Area</td>
</tr>
<tr>
<td>91</td>
<td>Area - Quadrilaterals</td>
</tr>
<tr>
<td>92</td>
<td>Area - Region of a Circle</td>
</tr>
<tr>
<td>90</td>
<td>Area - Triangle</td>
</tr>
<tr>
<td>99</td>
<td>Area Formulas - Summary for 2D Shapes</td>
</tr>
<tr>
<td>21</td>
<td>Associative Property</td>
</tr>
<tr>
<td>65</td>
<td>Box and Whisker Graphs</td>
</tr>
<tr>
<td>93</td>
<td>Cavalieri’s Principle</td>
</tr>
<tr>
<td></td>
<td>Circles</td>
</tr>
<tr>
<td>92</td>
<td>Circles - Arc Lengths</td>
</tr>
<tr>
<td>92</td>
<td>Circles - Region Areas</td>
</tr>
<tr>
<td>21</td>
<td>Closure Property</td>
</tr>
<tr>
<td>21</td>
<td>Commutative Property</td>
</tr>
<tr>
<td></td>
<td>Cones</td>
</tr>
<tr>
<td>97</td>
<td>Cones - Definitions</td>
</tr>
<tr>
<td>97</td>
<td>Cones - Surface Area and Volume</td>
</tr>
<tr>
<td>46</td>
<td>Coordinates in a Plane</td>
</tr>
<tr>
<td></td>
<td>Cylinders</td>
</tr>
<tr>
<td>94</td>
<td>Cylinders - Definitions</td>
</tr>
<tr>
<td>94</td>
<td>Cylinders - Surface Area and Volume</td>
</tr>
<tr>
<td></td>
<td>Decimals</td>
</tr>
<tr>
<td>30</td>
<td>Decimals - Addition and Subtraction</td>
</tr>
<tr>
<td>31</td>
<td>Decimals - Comparing</td>
</tr>
<tr>
<td>33</td>
<td>Decimals - Conversions to Percents and Fractions</td>
</tr>
<tr>
<td>30</td>
<td>Decimals - Division</td>
</tr>
<tr>
<td>30</td>
<td>Decimals - Multiplication</td>
</tr>
<tr>
<td>32</td>
<td>Decimals - Rounding</td>
</tr>
<tr>
<td>34</td>
<td>Decimals - Table of Conversions</td>
</tr>
<tr>
<td>66</td>
<td>Distance Between Points - 1-Dimensional and 2-Dimensional</td>
</tr>
<tr>
<td>21</td>
<td>Distributive Property</td>
</tr>
<tr>
<td>8</td>
<td>Divisibility Rules (2 to 12)</td>
</tr>
<tr>
<td></td>
<td>Equations</td>
</tr>
<tr>
<td>49</td>
<td>Equations - Multi-Step</td>
</tr>
<tr>
<td>50</td>
<td>Equations - Multi-Step Equation Tips and Tricks</td>
</tr>
<tr>
<td>48</td>
<td>Equations - One-Step</td>
</tr>
<tr>
<td>51</td>
<td>Equations - Solving for a Variable</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook

Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>Equilateral Triangle</td>
</tr>
<tr>
<td>41</td>
<td>Exponent Formulas</td>
</tr>
<tr>
<td>14,15</td>
<td>Factors - Finding All Factors of a Number</td>
</tr>
<tr>
<td></td>
<td>Fractions</td>
</tr>
<tr>
<td>24</td>
<td>Fractions - Addition and Subtraction</td>
</tr>
<tr>
<td>31</td>
<td>Fractions - Comparing</td>
</tr>
<tr>
<td>33</td>
<td>Fractions - Conversions to Decimals and Percents</td>
</tr>
<tr>
<td>26</td>
<td>Fractions - Lowest Terms</td>
</tr>
<tr>
<td>25</td>
<td>Fractions - Multiplication and Division</td>
</tr>
<tr>
<td>34</td>
<td>Fractions - Table of Conversions</td>
</tr>
<tr>
<td>12</td>
<td>Greatest Common Divisor (GCD)</td>
</tr>
<tr>
<td>12</td>
<td>Greatest Common Factor (GCF)</td>
</tr>
<tr>
<td>21</td>
<td>Identity Property</td>
</tr>
<tr>
<td>26</td>
<td>Improper Fractions</td>
</tr>
<tr>
<td></td>
<td>Inequalities</td>
</tr>
<tr>
<td>52</td>
<td>Inequalities</td>
</tr>
<tr>
<td>54</td>
<td>Inequalities - Compound Inequalities in One Dimension</td>
</tr>
<tr>
<td>53</td>
<td>Inequalities - Graphs in One Dimension</td>
</tr>
<tr>
<td>21</td>
<td>Inverse Property</td>
</tr>
<tr>
<td>71</td>
<td>Isosceles Triangle</td>
</tr>
<tr>
<td>17</td>
<td>King Henry Rule for Metric Conversions</td>
</tr>
<tr>
<td>80</td>
<td>Kites</td>
</tr>
<tr>
<td>13</td>
<td>Least Common Multiple (LCM)</td>
</tr>
<tr>
<td>55</td>
<td>Lines - Plotting Using t-Charts</td>
</tr>
<tr>
<td></td>
<td>Linear Equations</td>
</tr>
<tr>
<td>59</td>
<td>Point-Slope Form of a Line</td>
</tr>
<tr>
<td>59</td>
<td>Slope-Intercept Form of a Line</td>
</tr>
<tr>
<td>59</td>
<td>Standard Form of a Line</td>
</tr>
<tr>
<td>13</td>
<td>Lowest Common Denominator (LCD)</td>
</tr>
<tr>
<td>47</td>
<td>Math Words - Converting to Mathematical Expressions</td>
</tr>
<tr>
<td>63</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>Measures and Weights</td>
</tr>
<tr>
<td>17</td>
<td>Measures and Weights - Metric Conversions</td>
</tr>
<tr>
<td>18</td>
<td>Measures and Weights - U.S. Conversions</td>
</tr>
<tr>
<td>19</td>
<td>Measures and Weights - U.S./Metric Conversions</td>
</tr>
<tr>
<td>63</td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td>Mixed Numbers</td>
</tr>
<tr>
<td>27</td>
<td>Mixed Numbers - Addition and Subtraction</td>
</tr>
<tr>
<td>29</td>
<td>Mixed Numbers - Division</td>
</tr>
<tr>
<td>26</td>
<td>Mixed Numbers - General</td>
</tr>
<tr>
<td>28</td>
<td>Mixed Numbers - Multiplication</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Mode</td>
</tr>
<tr>
<td>102</td>
<td>Multiplication Table</td>
</tr>
<tr>
<td></td>
<td>Number Patterns</td>
</tr>
<tr>
<td>22</td>
<td>Number Patterns - Converting a Linear Pattern to an Equation</td>
</tr>
<tr>
<td>22</td>
<td>Number Patterns - Recognizing Linear Patterns</td>
</tr>
<tr>
<td>61</td>
<td>Odds</td>
</tr>
<tr>
<td>23</td>
<td>Operating with Real Numbers</td>
</tr>
<tr>
<td></td>
<td>Order of Operations</td>
</tr>
<tr>
<td>20</td>
<td>Order of Operations - Parenthetical Device</td>
</tr>
<tr>
<td>20</td>
<td>Order of Operations - PEMDAS</td>
</tr>
<tr>
<td>60</td>
<td>Parallel and Perpendicular Lines - Slopes</td>
</tr>
<tr>
<td>69</td>
<td>Parallel Lines and Transversals</td>
</tr>
<tr>
<td>79</td>
<td>Parallelograms - Characteristics</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
</tr>
<tr>
<td>36, 37</td>
<td>Percent Decrease</td>
</tr>
<tr>
<td>35, 37</td>
<td>Percent Increase</td>
</tr>
<tr>
<td>33</td>
<td>Percents - Conversions to Decimals and Fractions</td>
</tr>
<tr>
<td>34</td>
<td>Percents - Table of Conversions</td>
</tr>
<tr>
<td></td>
<td>Perimeter</td>
</tr>
<tr>
<td>92</td>
<td>Perimeter - Arc Length of a Circle</td>
</tr>
<tr>
<td>91</td>
<td>Perimeter - Quadrilaterals</td>
</tr>
<tr>
<td>90</td>
<td>Perimeter - Triangle</td>
</tr>
<tr>
<td>99</td>
<td>Perimeter Formulas - Summary for 2D Shapes</td>
</tr>
<tr>
<td>38</td>
<td>Pie Charts</td>
</tr>
<tr>
<td></td>
<td>Plane Coordinates</td>
</tr>
<tr>
<td>46</td>
<td>Plane Coordinates - General</td>
</tr>
<tr>
<td>46</td>
<td>Plane Coordinates - Plotting Points</td>
</tr>
<tr>
<td>55</td>
<td>Plane Coordinates - Plotting Points with t-Charts</td>
</tr>
<tr>
<td>46</td>
<td>Plotting a Point on a Plane</td>
</tr>
<tr>
<td>59</td>
<td>Point-Slope Form of a Line</td>
</tr>
<tr>
<td></td>
<td>Polygons</td>
</tr>
<tr>
<td>87, 88</td>
<td>Polygons - Definitions</td>
</tr>
<tr>
<td>89</td>
<td>Polygons - Exterior Angles</td>
</tr>
<tr>
<td>89</td>
<td>Polygons - Interior Angles</td>
</tr>
<tr>
<td>87</td>
<td>Polygons - Number of Diagonals in a Polygon</td>
</tr>
<tr>
<td>42</td>
<td>Powers of 10</td>
</tr>
<tr>
<td></td>
<td>Prime Numbers</td>
</tr>
<tr>
<td>10</td>
<td>Prime Number - Factor Trees</td>
</tr>
<tr>
<td>11</td>
<td>Prime Number - Some Facts</td>
</tr>
<tr>
<td>9</td>
<td>Prime Numbers - Definitions</td>
</tr>
<tr>
<td>9</td>
<td>Prime Numbers - Factorization</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook

Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prisms</td>
</tr>
<tr>
<td>93</td>
<td>Prisms - Definitions</td>
</tr>
<tr>
<td>93</td>
<td>Prisms - Surface Area and Volume</td>
</tr>
<tr>
<td></td>
<td>Probability</td>
</tr>
<tr>
<td>61</td>
<td>Probability and Odds</td>
</tr>
<tr>
<td>62</td>
<td>Probability with Dice</td>
</tr>
<tr>
<td></td>
<td>Properties of Algebra</td>
</tr>
<tr>
<td>21</td>
<td>Properties of Algebra - Properties of Addition and Multiplication</td>
</tr>
<tr>
<td>21</td>
<td>Properties of Algebra - Properties of Equality</td>
</tr>
<tr>
<td>21</td>
<td>Properties of Algebra - Properties of Zero</td>
</tr>
<tr>
<td></td>
<td>Pyramids</td>
</tr>
<tr>
<td>96</td>
<td>Pyramids - Definitions</td>
</tr>
<tr>
<td>96</td>
<td>Pyramids - Surface Area and Volume</td>
</tr>
<tr>
<td>72</td>
<td>Pythagorean Theorem</td>
</tr>
<tr>
<td>73</td>
<td>Pythagorean Triples</td>
</tr>
<tr>
<td></td>
<td>Quadrilaterals</td>
</tr>
<tr>
<td>78</td>
<td>Quadrilaterals - Characteristics</td>
</tr>
<tr>
<td>77</td>
<td>Quadrilaterals - Definitions</td>
</tr>
<tr>
<td>78</td>
<td>Quadrilaterals - Figures</td>
</tr>
<tr>
<td>91</td>
<td>Quadrilaterals - Perimeter and Area</td>
</tr>
<tr>
<td>63</td>
<td>Range</td>
</tr>
<tr>
<td>74</td>
<td>Ratios and Proportions</td>
</tr>
<tr>
<td>71</td>
<td>Right Triangle</td>
</tr>
<tr>
<td>16</td>
<td>Roman Numerals</td>
</tr>
<tr>
<td>40</td>
<td>Roots of Large Numbers</td>
</tr>
<tr>
<td>71</td>
<td>Scalene Triangle</td>
</tr>
<tr>
<td></td>
<td>Scientific Notation</td>
</tr>
<tr>
<td>44</td>
<td>Scientific Notation - Adding and Subtracting</td>
</tr>
<tr>
<td>43</td>
<td>Scientific Notation - Conversion to and from Decimals</td>
</tr>
<tr>
<td>43</td>
<td>Scientific Notation - Format</td>
</tr>
<tr>
<td>45</td>
<td>Scientific Notation - Multiplying and Dividing</td>
</tr>
<tr>
<td>11</td>
<td>Sieve of Eratosthenes</td>
</tr>
<tr>
<td></td>
<td>Signs</td>
</tr>
<tr>
<td>23</td>
<td>Signs of Added or Subtracted Numbers</td>
</tr>
<tr>
<td>23</td>
<td>Signs of Multiplied or Divided Numbers</td>
</tr>
<tr>
<td>75</td>
<td>Similar Triangles</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>58</td>
<td>Slope of a Line - 8 Variations</td>
</tr>
<tr>
<td>56</td>
<td>Slope of a Line - Mathematical Definition</td>
</tr>
<tr>
<td>57</td>
<td>Slope of a Line - Rise over Run</td>
</tr>
<tr>
<td>59</td>
<td>Slope-Intercept Form of a Line</td>
</tr>
</tbody>
</table>
Pre-Algebra Handbook

Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Slopes of Parallel and Perpendicular Lines</td>
</tr>
<tr>
<td></td>
<td>Sphere</td>
</tr>
<tr>
<td>98</td>
<td>Spheres - Definitions</td>
</tr>
<tr>
<td>98</td>
<td>Spheres - Surface Area and Volume</td>
</tr>
<tr>
<td></td>
<td>Square Root</td>
</tr>
<tr>
<td>39</td>
<td>Square Root Estimation</td>
</tr>
<tr>
<td>40</td>
<td>Square Roots of Large Numbers</td>
</tr>
<tr>
<td>59</td>
<td>Standard Form of a Line</td>
</tr>
<tr>
<td>64</td>
<td>Stem and Leaf Plots</td>
</tr>
<tr>
<td></td>
<td>Surface Area</td>
</tr>
<tr>
<td>97</td>
<td>Surface Area - Cones</td>
</tr>
<tr>
<td>94</td>
<td>Surface Area - Cylinders</td>
</tr>
<tr>
<td>93</td>
<td>Surface Area - Prisms</td>
</tr>
<tr>
<td>96</td>
<td>Surface Area - Pyramids</td>
</tr>
<tr>
<td>98</td>
<td>Surface Area - Spheres</td>
</tr>
<tr>
<td>95</td>
<td>Surface Area - Using Decomposition</td>
</tr>
<tr>
<td>100</td>
<td>Surface Area Formulas - Summary for 3D Shapes</td>
</tr>
<tr>
<td></td>
<td>Transformation</td>
</tr>
<tr>
<td>86</td>
<td>Transformation - Composition</td>
</tr>
<tr>
<td>81</td>
<td>Transformation - Definitions</td>
</tr>
<tr>
<td>81</td>
<td>Transformation - Isometric</td>
</tr>
<tr>
<td>83</td>
<td>Transformation - Reflection</td>
</tr>
<tr>
<td>84</td>
<td>Transformation - Rotation</td>
</tr>
<tr>
<td>85</td>
<td>Transformation - Translation</td>
</tr>
<tr>
<td>80</td>
<td>Trapezoids</td>
</tr>
<tr>
<td></td>
<td>Triangles</td>
</tr>
<tr>
<td>71</td>
<td>Triangles - General</td>
</tr>
<tr>
<td>90</td>
<td>Triangles - Perimeter and Area</td>
</tr>
<tr>
<td>76</td>
<td>Triangles - Proportion Tables for Similar Triangles</td>
</tr>
<tr>
<td>75</td>
<td>Triangles - Similar</td>
</tr>
<tr>
<td>70</td>
<td>Triangles - What Makes a Triangle?</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
</tr>
<tr>
<td>97</td>
<td>Volume - Cones</td>
</tr>
<tr>
<td>94</td>
<td>Volume - Cylinders</td>
</tr>
<tr>
<td>93</td>
<td>Volume - Prisms</td>
</tr>
<tr>
<td>96</td>
<td>Volume - Pyramids</td>
</tr>
<tr>
<td>98</td>
<td>Volume - Spheres</td>
</tr>
<tr>
<td>100</td>
<td>Volume Formulas - Summary for 3D Shapes</td>
</tr>
</tbody>
</table>