Derivation of Euler’s Formula by Integration

Start with: y = cosx +isinx

Then: dy = (—sinx +icosx) dx

dy = (icosx — sinx) dx

dy =iy dx
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Integrate: f % = f [ dx

Final Result: e = cosx +isinx

Very cool sub-case

When x = m, Euler’s equation becomes:
e'™ = cosmw +isinm

or, el™ = —1

Rewriting this provides an equation that relates 5 of the most important mathematical
constants to each other:




Derivation of Euler’s Formula Using Power Series

A Power Series about zero is an infinite series of the form:
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Many mathematical functions can be expressed as power series. Of particular interest in
deriving Euler’s Identity are the following:
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Note, then, that:
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Notice that the first two power series add to the third, so we have:
. o and, substituting x = 7 yields: .
e = cosx +isinx R e+ 1=0




