TRIG-STAR PROBLEM LOCAL CONTEST PRINT NAME: KNOWN: DISTANCE AB = 240.41 DISTANCE BC = 487.78 \angle CBA = _____ (5 POINTS) FIND: DISTANCE AC = (5 POINTS) REQUIRED ANSWER FORMAT DISTANCES: NEAREST HUNDREDTH ANGLES: DEGREES-MINUTES-SECONDS TO THE NEAREST SECOND ## TRIG-STAR PROBLEM LOCAL CONTEST KNOWN: DISTANCE EF = $317.75 \angle EFG = 121^{\circ}19'48'' \angle FEG = 42^{\circ}45'36''$ DISTANCE EH = ______ (6 POINTS) FIND: DISTANCE FH = (6 POINTS) DISTANCE FG = (6 POINTS) DISTANCE GH = (6 POINTS) \angle EGF = ______ (6 POINTS) REQUIRED ANSWER FORMAT DISTANCES: NEAREST HUNDREDTH ANGLES: DEGREES-MINUTES-SECONDS TO THE NEAREST SECOND PAGE TOTAL: _____ POINTS KNOWN: DISTANCE BC = 325.32 DISTANCE CD = 180.18 \angle BAD = $82^{\circ}28^{\circ}48^{\circ}$ REQUIRED ANSWER FORMAT DISTANCES: NEAREST HUNDREDTH PAGE TOTAL: _____ POINTS ## TRIG-STAR PROBLEM LOCAL CONTEST A MOLASSES PLANT WANTS TO CONSTRUCT THE LARGEST CIRCULAR TANK POSSIBLE INSIDE AN OBLIQUE SHAPED CONTAINMENT AREA. THE CENTER OF THE CIRCULAR TANK IS INDICATED BY POINT "A" AND THE CORNERS OF THE CONTAINMENT AREA ARE LABELED "B", "C", "D" AND "E". A SURVEYOR HAS BEEN HIRED TO DETERMINE THE DIMENSIONS BELOW. REQUIRED ANSWER FORMAT DISTANCES: NEAREST HUNDREDTH ## TRIG-STAR ANSWER KEY LOCAL CONTEST PAGE 1 $$\angle$$ CBA = 60°28'15" DISTANCE AC = $$424.42$$ PAGE 1 DISTANCE EH = $$233.29$$ DISTANCE FG = $$| 786.97 |$$ DISTANCE GH = $$756.82$$ $$\angle$$ EGF = 15°54'36" PAGE 2 DISTANCE AB = $$224.69$$ DISTANCE AD $$=$$ 351.93 DISTANCE AC = $$395.37$$ PAGE 3 DISTANCE AB = $$116.51$$ DISTANCE AC = $$82.85$$ DISTANCE AD $$=$$ 99.28 DISTANCE AE = $$125.52$$ DISTANCE AF $$=$$ 72.00