## TRIG-STAR PROBLEM LOCAL CONTEST

PRINT NAME:



KNOWN: DISTANCE AB = 240.41 DISTANCE BC = 487.78

 $\angle$  CBA = \_\_\_\_\_ (5 POINTS) FIND:

DISTANCE AC = (5 POINTS)

REQUIRED ANSWER FORMAT

DISTANCES: NEAREST HUNDREDTH ANGLES: DEGREES-MINUTES-SECONDS TO THE NEAREST SECOND

## TRIG-STAR PROBLEM LOCAL CONTEST



KNOWN: DISTANCE EF =  $317.75 \angle EFG = 121^{\circ}19'48'' \angle FEG = 42^{\circ}45'36''$ 

DISTANCE EH = \_\_\_\_\_\_ (6 POINTS) FIND:

DISTANCE FH = (6 POINTS)

DISTANCE FG = (6 POINTS)

DISTANCE GH = (6 POINTS)

 $\angle$  EGF = \_\_\_\_\_\_ (6 POINTS)

REQUIRED ANSWER FORMAT

DISTANCES: NEAREST HUNDREDTH ANGLES: DEGREES-MINUTES-SECONDS TO THE NEAREST SECOND

PAGE TOTAL: \_\_\_\_\_ POINTS





KNOWN: DISTANCE BC = 325.32 DISTANCE CD = 180.18  $\angle$  BAD =  $82^{\circ}28^{\circ}48^{\circ}$ 

REQUIRED ANSWER FORMAT

DISTANCES: NEAREST HUNDREDTH

PAGE TOTAL: \_\_\_\_\_ POINTS

## TRIG-STAR PROBLEM LOCAL CONTEST

A MOLASSES PLANT WANTS TO CONSTRUCT THE LARGEST CIRCULAR TANK POSSIBLE INSIDE AN OBLIQUE SHAPED CONTAINMENT AREA. THE CENTER OF THE CIRCULAR TANK IS INDICATED BY POINT "A" AND THE CORNERS OF THE CONTAINMENT AREA ARE LABELED "B", "C", "D" AND "E". A SURVEYOR HAS BEEN HIRED TO DETERMINE THE DIMENSIONS BELOW.



REQUIRED ANSWER FORMAT
DISTANCES: NEAREST HUNDREDTH

## TRIG-STAR ANSWER KEY LOCAL CONTEST

PAGE 1

$$\angle$$
 CBA = 60°28'15"

DISTANCE AC = 
$$424.42$$

PAGE 1

DISTANCE EH = 
$$233.29$$

DISTANCE FG = 
$$| 786.97 |$$

DISTANCE GH = 
$$756.82$$

$$\angle$$
 EGF = 15°54'36"

PAGE 2

DISTANCE AB = 
$$224.69$$

DISTANCE AD 
$$=$$
 351.93

DISTANCE AC = 
$$395.37$$

PAGE 3

DISTANCE AB = 
$$116.51$$

DISTANCE AC = 
$$82.85$$

DISTANCE AD 
$$=$$
 99.28

DISTANCE AE = 
$$125.52$$

DISTANCE AF 
$$=$$
 72.00