For more information on the techniques used in this document, see the "Algebra 2 Chapter 5 Companion," available on www.mathguy.us.

For #1-4, solve.

1)
$$4y^4 + 4y^3 = 48y^2$$

 $4y^4 + 4y^3 = 48y^2$ **Starting Equation:**

 $-48y^2 - 48y^2$ Subtract $48y^2$ from both sides:

 $4v^4 + 4v^3 - 48v^2 = 0$ Result:

 $4v^2(v^2+v-12)=0$ Factor out $4y^2$:

 $4y^2(y-3)(y+4)=0$ Factor the remaining trinomial:

y = 0 y - 3 = 0 y + 4 = 0Break into separate equations:

Identify solutions: $y = \{0, 3, -4\}$

Question: Why didn't we start this problem by dividing by y^2 ?

Answer: Because it is possible that y = 0, and we cannot divide an equation by 0 and get valid results. Also, if 0 is a root (i.e., a zero of the polynomial), we may lose it in the division, meaning that the solution set we find would not include y = 0, which it should.

Lesson: don't divide by a term including the variable unless you are very careful.

2)
$$4x^4 = 9x^2$$

 $4x^4 = 9x^2$ **Starting Equation:**

 $-9x^2 - 9x^2$ Subtract $9x^2$ from both sides:

 $4x^4 - 9x^2 = 0$ Result:

 $x^2 (4x^2 - 9) = 0$ Factor out x^2 :

 $x^{2}(2x + 3)(2x - 3) = 0$ Factor the difference of squares:

x = 0 2x + 3 = 0 2x - 3 = 0Break into separate equations:

 $x = \left\{ 0, -\frac{3}{2}, \frac{3}{2} \right\}$ **Identify solutions:**

Use the "u"

need to.

method described

in #3 above if you

3) $x^4 - 3x^2 - 18 = 0$

This equation has higher powers of x than we are used to for a trinomial, so we may need a trick here. If you see this equation as simply a quadratic in terms of x^2 -terms instead of x-terms, then you do not need the trick. If you do not see that, consider this:

Let $u = x^2$. Then, we can re-write our equation as: $u^2 - 3u - 18 = 0$. Then:

Starting Equation: $u^2 - 3u - 18 = 0$

Factor the trinomial: (u-6)(u+3)=0

Substitute x^2 back in for u: $(x^2 - 6)(x^2 + 3) = 0$

Break into separate equations: $x^2 - 6 = 0$ $x^2 + 3 = 0$

Manipulate each equation: $x^2 = 6$ $x^2 = -3$

Identify solutions: $x = \{\pm \sqrt{6}, \pm i\sqrt{3}\}$

4) $3x^5 - 9x^3 = 30x$

Starting Equation: $3x^5 - 9x^3 = 30x$

Subtract 30x from both sides: -30x - 30x

Result: $3x^5 - 9x^3 - 30x = 0$

Factor out 3x: $3x(x^4 - 3x^2 - 10) = 0$

Factor the remaining trinomial: $3x(x^2 - 5)(x^2 + 2) = 0$

Break into separate equations: x = 0 $x^2 - 5 = 0$ $x^2 + 2 = 0$

Manipulate each equation: x = 0 $x^2 = 5$ $x^2 = -2$

Identify solutions: $x = \{0, \pm \sqrt{5}, \pm i\sqrt{2}\}$

5) Given the polynomial $f(x) = x^3 - 5x^2 - 2x + 24$ and a factor (x + 2), factor completely.

First, divide out (x + 2) from f(x).

$$\begin{array}{r}
 x^2 - 7x + 12 \\
 x + 2 \overline{\smash)x^3 - 5x^2 - 2x + 24} \\
 \underline{x^3 + 2x^2} \\
 -7x^2 - 2x + 24 \\
 \underline{-7x^2 - 14x} \\
 \underline{12x + 24} \\
 \underline{12x + 24}
 \end{array}$$

Then, factor the resulting trinomial.

$$x^2 - 7x + 12 = (x - 3)(x - 4)$$

So, the fully factored polynomial is:

$$f(x) = (x+2)(x-3)(x-4)$$

6) What is the remaining term in the division:

$$(4x^3 - 6x^2 + 8x - 2) \div (2x - 1)$$
?

$$2x^{2} - 2x + 3$$

$$2x - 1 \overline{\smash)4x^{3} - 6x^{2} + 8x - 2}$$

$$4x^{3} - 2x^{2}$$

$$-4x^{2} + 8x - 2$$

$$-4x^{2} + 2x$$

$$6x - 2$$

$$6x - 3$$

$$1$$

Let's call the

polynomial "f(x)"

7) Solve $x^3 + 3x^2 - 28x \le 0$

Write the corresponding equation:
$$x^3 + 3x^2 - 28x = 0$$

Factor out *x*:
$$x(x^2 + 3x - 28) = 0$$

Factor the remaining trinomial:
$$x(x+7)(x-4) = 0$$

Break into separate equations:
$$x = 0$$
 $x + 7 = 0$ $x - 4 = 0$

Solutions for
$$x$$
 in the equation: $x = \{0, -7, 4\}$

(continued on the next page)

Then, set up a table of intervals based on the solutions for x and test each interval to determine the sign of the function in that interval:

Interval	x < -7	-7 < x < 0	0 < x < 4	x > 4
Terms of $f(x)$	x(x+7)(x-4)	x(x+7)(x-4)	x(x+7)(x-4)	x(x+7)(x-4)
Signs of terms	- · - · -	- · + · -	+ · + · -	+ · + · +
Sign of $f(x)$	_	+	_	+

Based on the results in the table, $x^3 + 3x^2 - 28x \le 0$ when x < -7 or 0 < x < 4. Then, because the sign in the inequality is "≤", which includes the equal sign, we must add to this set the solutions for x in the equation $(x = \{0, -7, 4\})$. So, the final solution set is:

$$x \le -7$$
 or $0 \le x \le 4$

8) Solve $x^3 + 5x^2 - 4x - 20 > 0$

Let's call the polynomial "f(x)"

Write the corresponding equation: $x^3 + 5x^2 - 4x - 20 = 0$

$$x^3 + 5x^2 - 4x - 20 = 0$$

Be careful with

Group the terms in pairs:

Collect terms:

Factor out greatest common factors:
$$x^2(x+5) - 4(x+5) = 0$$

 $(x^3 + 5x^2) - (4x + 20) = 0$

your signs

$$(x^2 - 4)(x + 5) = 0$$

when grouping.

Factor the difference of squares:

$$(x-2)(x+2)(x+5) = 0$$

Break into separate equations:

$$x - 2 = 0$$
 $x + 2 = 0$ $x + 5 = 0$

Solutions for *x* in the equation:

$$x = \{2, -2, -5\}$$

Then, set up a table of intervals based on the solutions for x and test each interval to determine the sign of the function in that interval:

Interval	<i>x</i> < −5	-5 < x < -2	-2 < x < 2	<i>x</i> > 2
Terms of $f(x)$	(x-2)(x+2)(x+5)	(x-2)(x+2)(x+5)	(x-2)(x+2)(x+5)	(x-2)(x+2)(x+5)
Signs of terms	- · - · -	- · - · +	-·+·+	+ · + · +
Sign of $f(x)$	-	+	_	+

Based on the results in the table, $x^3 + 5x^2 - 4x - 20 > 0$ when -5 < x < -2 or x > 2. We do not need to add anything to this set because the sign in the original inequality is ">", which does not include an equal sign. So, the final solution set is:

$$-5 < x < -2 \text{ or } x > 2$$

For #9–10, graph the polynomial functions. State the x-intercepts, relative max and min, end behavior, and where it is increasing and decreasing.

9)
$$f(x) = -2x^3 + 7x^2 - x - 3$$

You will need to do this on a graphing calculator. Answers are shown in **green** below. Notes are in red.

x-intercepts: $x = \{-0.55, 0.85, 3.20\}$

relative max: (2.3, 7.4)

relative min: (0.1, -3.0)

end behavior: : $as x \to \infty$, $f(x) \to -\infty$

as $x \to -\infty$, $f(x) \to +\infty$

increasing: 0.1 < x < 2.3 (from min to max)

decreasing: x < 0.1 or x > 2.3 (everywhere

else)

Note: at x = 0.1 and at x = 2.3, the function is flat, and is neither increasing nor decreasing.

10)
$$f(x) = x^4 - 6x^2 + 3$$

You will need to do this on a graphing calculator. Answers are shown in **green** below. Notes are in red.

x-intercepts:
$$x = \{-2.33, -0.74, 0.74, 2.33\}$$

relative max: (0,3)

relative min: (-1.7, -6.0) and (1.7, -6.0)

end behavior: : $as \ x \to \infty$, $f(x) \to +\infty$ $as \ x \to -\infty$, $f(x) \to +\infty$

increasing: -1.7 < x < 0 or x > 1.7 (from the left min to the max, and to the right of the right min)

decreasing: x < -1.7 or 0 < x < 1.7 (everywhere else)

Note: at x = -1.7, at x = 0, and at x = 1.7, the function is flat, and is neither increasing nor decreasing.

For #11 –17, perform the indicated operation:

11)
$$(5x^3 - x + 3) + (x^3 - 9x^2 + 4x)$$

$$5x^{3} - x + 3$$

$$+ x^{3} - 9x^{2} + 4x$$

$$6x^{3} - 9x^{2} + 3x + 3$$

I like to set these up vertically. It's easier on the eyes.

12)
$$(x^3 + 4x^2 - 5x) - (4x^3 + x^2 - 7)$$

When subtracting, I prefer to change all of the signs of the expression being subtracted and then add. (I like adding better than subtracting.)

13)
$$(x-1)(2x+3)^2$$

$$(x-1)(2x+3)^2 = (x-1)(2x+3)(2x+3)$$

I would start by FOIL-ing the two (2x + 3) terms.

$$(2x + 3)(2x + 3)$$

$$\mathbf{F} \quad 2x \cdot 2x = 4x^2$$

$$\begin{array}{ccc}
\mathbf{0} & 2x \cdot 3 = 6x \\
\mathbf{I} & 3 \cdot 2x = 6x
\end{array}$$

L
$$3 \cdot 3 = 9$$

$$(2x + 3)(2x + 3) = 4x^2 + 12x + 9$$

Multiply the result by (x-1).

$$4x^2 + 12x + 9$$

$$x-1$$

$$-4x^2 - 12x - 9$$
$$4x^3 + 12x^2 + 9x$$

$$4x^3 + 8x^2 - 3x - 9$$

14)
$$(4x^4 - 7x^3 + 15x - 7) - (-4x^2 - 10x)$$

$$4x^{4} - 7x^{3} + 15x - 7$$

$$+ 4x^{2} + 10x$$

$$4x^{4} - 7x^{3} + 4x^{2} + 25x - 7$$

When lining things up vertically to add or subtract, make sure you leave room for "missing terms." For example, in Problem 14, there is no x^2 term in the minuend (the top expression), so we leave an open space for it.

15)
$$(x-6)(5x^2+x-8)$$

$$5x^2 + x - 8$$

$$r - \epsilon$$

$$-30x^2 - 6x + 48$$

$$5x^3 + x^2 - 8x$$

$$5x^3 - 29x^2 - 14x + 48$$

16)
$$(2x^3 - 11x^2 + 13x - 44) \div (x - 5)$$

$$\begin{array}{r}
2x^2 - x + 8 - \frac{4}{x-5} \\
x - 5 \overline{\smash)2x^3 - 11x^2 + 13x - 44} \\
\underline{2x^3 - 10x^2} \\
- x^2 + 13x - 44 \\
\underline{- x^2 + 5x} \\
8x - 44 \\
\underline{- 8x - 40} \\
-4
\end{array}$$

Note: The remainder is generally converted to a fraction whose denominator is the divisor.

17)
$$(x^4 - 10x^2 + 2x + 3) \div (x - 3)$$

$$\begin{array}{r}
x^3 + 3x^2 - x - 1 \\
x - 3 \overline{\smash)x^4} & -10x^2 + 2x + 3 \\
\underline{x^4 - 3x^3} \\
3x^3 - 10x^2 + 2x + 3 \\
\underline{3x^3 - 9x^2} \\
-x^2 + 2x + 3 \\
\underline{-x^2 + 3x} \\
-x + 3 \\
\underline{-x + 3} \\
0
\end{array}$$

Remember to leave room in the dividend for the missing x^3 term.

18) Find the other zeros of f(x) given that $f(x) = x^3 - 4x^2 - 11x + 30$ and x = -3 is one zero.

First, divide (x + 3) out of f(x).

$$\begin{array}{r}
x^2 - 7x + 10 \\
x + 3 \overline{\smash)x^3 - 4x^2 - 11x + 30} \\
\underline{x^3 + 3x^2} \\
-7x^2 - 11x + 30 \\
\underline{-7x^2 - 21x} \\
10x + 30 \\
\underline{10x + 30} \\
0
\end{array}$$

Then, factor the remaining trinomial.

$$x^2 - 7x + 10 = (x - 2)(x - 5) = 0$$

Then, break the factored trinomial into separate equations and solve each:

$$(x-2) = 0$$
 $(x-5) = 0$
 $x = \{2, 5\}$

Why do we divide f(x) by (x + 3) if the zero is x = -3? Because if r is a zero of f(x), then the corresponding factor of f(x) is (x - r).

19) Given the polynomial $f(x) = 9x^3 - 9x^2 - 4x + 4$ has a factor of (x - 1), factor f(x) completely.

First, divide (x - 1) out of f(x).

$$\begin{array}{r}
9x^{2} - 4 \\
x - 1 \overline{\smash)9x^{3} - 9x^{2} - 4x + 4} \\
9x^{3} - 9x^{2} \\
-4x + 4 \\
-4x + 4 \\
\hline
0
\end{array}$$

Then, factor the remaining polynomial. Note that it is a difference of squares:

$$9x^{2} - 4 = (3x)^{2} - 2^{2}$$
$$= (3x + 2)(3x - 2)$$

So, the fully factored polynomial is:

$$f(x) = (x-1)(3x+2)(3x-2)$$

20) Which function is represented by the graph?

A)
$$f(x) = (x-1)^2 + 3$$

B)
$$f(x) = -(x+1)^2 - 3$$

C)
$$f(x) = (x+1)^2 - 3$$

D)
$$f(x) = -(x-1)^2 + 3$$

The vertex is (-1, -3), and the curve opens downward (so there is a negative lead coefficient). The equation is:

$$f(x) = -(x+1)^2 - 3$$
 Answer B

Note: **Vertex Form** is: $f(x) = a(x - h)^2 + k$, where (h, k) is the vertex of the curve, and a determines the direction of the curve and the magnitude of its stretch or compression.

21) Which function is represented by the graph?

A)
$$(x-3)(x-1)$$

B)
$$(x-3)(x+1)$$

(c)
$$(x+3)(x-1)$$

D)
$$(x + 3)(x + 1)$$

The zeros are x = -3, 1, so the equation is:

$$f(x) = (x+3)(x-1)$$
 Answer C

Note: **Intercept Form** is: $f(x) = a(x - r_1)(x - r_2)$, where r_1 and r_2 are the zeros of the quadratic equation and a determines the direction of the curve and the magnitude of its stretch or compression.

For #22 – 27, factor completely:

22)
$$10x^4 - 40$$

Starting Expression: $10x^4 - 40$

Factor out the greatest common factor: $10 (x^4 - 4) = 10 [(x^2)^2 - 2^2]$

Factor the difference of squares: $10(x^2 + 2)(x^2 - 2)$

To solve this problem, you need to recall how to factor a difference of squares:

$$a^2 - b^2 = (a + b) (a - b)$$
 Memorize this!

Be careful about your signs when

grouping terms.

23) $2x^3 + 3x^2 - 8x - 12$

Starting Expression: $2x^3 + 3x^2 - 8x - 12$

Group the terms into pairs: $(2x^3 + 3x^2) - (8x + 12)$

Factor out the GCF from each pair: $x^2(2x+3) - 4(2x+3)$

Collect terms: $(x^2 - 4)(2x + 3)$

Factor the difference of squares: (x-2)(x+2)(2x+3)

Final factored form: (x-2)(x+2)(2x+3)

24) $x^3 + 27$

This is a sum of cubes. Here are the formulas for the sum and difference of cubes. Memorize them!

$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

Then.

 $x^3 + 27 = x^3 + 3^3$ So, we will let a = x and b = 3.

$$= (x + 3) (x^2 - 3 \cdot x + 3^2)$$

$$=(x+3)(x^2-3x+9)$$

25) $6x^3 + 4x^2 - 16x$

Starting Expression: $6x^3 + 4x^2 - 16x$

Factor out the GCF from each term: $2x(3x^2 + 2x - 8)$ note: $A \cdot C = 3 \cdot (-8) = -24$

Next: use the AC method to find two values whose sum is +2 and product is -24. Those values are 6 and -4. The AC method is explained in detail in the Chapter 5 Companion.

Replace +2x with +6x - 4x: $2x (3x^2 + 6x - 4x - 8)$

Group the four terms into pairs: $2x \left[(3x^2 + 6x) - (4x + 8) \right]$

Factor out the GCFs from each pair: 2x [3x (x + 2) - 4 (x + 2)]

Collect Terms: 2x [(3x - 4) (x + 2)]

Final factored form: 2x(3x-4)(x+2)

26)
$$x^4 - 10x^2 + 9$$

Similar to Problem 3, above, this equation has higher powers of x than we are used to, so we may need a trick here. If you see this equation as simply a quadratic in terms of x^2 -terms instead of x-terms, then you do not need the trick. If you do not see that, consider this:

Let $u = x^2$. Then, we can re-write our equation as: $u^2 - 10u + 9 = 0$. Then:

Starting Equation: $u^2 - 10u + 9 = 0$

Factor the trinomial: (u-1)(u-9)=0

Substitute x^2 back in for u: $(x^2 - 1)(x^2 - 9) = 0$

Factor each difference of squares: (x + 1)(x - 1)(x + 3)(x - 3)

Final factored form: (x+1)(x-1)(x+3)(x-3)

27)
$$2x^4 - 16x$$

Starting Expression: $2x^4 - 16x$

Factor out the GCF from each term: $2x(x^3 - 8)$

Recognize the second term as a difference of cubes and recall the equation above that helps us deal with this situation:

$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

Then,

$$2x(x^3 - 8) = 2x(x^3 - 2^3)$$
 So, we will let $a = x$ and $b = 2$.
 $= 2x(x - 2)(x^2 + 2 \cdot x + 2^2)$
 $= 2x(x - 2)(x^2 + 2x + 4)$