1. Does $y = -x^2 - 5x - 4$ open up or down and what is the max/min?

The sign of the lead coefficient (i.e., the coefficient of x^2) tells you whether the function opens up or down.

If the lead coefficient is positive: the curve opens up.

If the lead coefficient is negative: the curve opens down.

Since the lead coefficient is -1, we know that this quadratic function opens down.

To find the vertex and, therefore, the location of the function's maximum, we can either take the average of its roots (i.e., x-intercepts) or use the formula: $x = -\frac{b}{2a}$.

Method 1: The function factors into: y=-(x+1)(x+4), so its roots are $x=\{-1,-4\}$. The average of these is $x=-\frac{5}{2}$. Method 2: If we choose, instead, to use the above orange formula, we get: $x=-\frac{b}{2a}=-\frac{-5}{2\cdot(-1)}=-\frac{5}{2}$.

The **maximum** is the *y*-value at $x = -\frac{5}{2}$. $y = -\left(-\frac{5}{2}\right)^2 - 5 \cdot \left(-\frac{5}{2}\right) - 4 = \frac{9}{4}$

2. Complete the square: $x^2 + 2x - 9 = 0$

Starting Equation: $x^2 + 2x - 9 = 0$

Add 9 to both sides: +9 + 9

Result: $\frac{x^2 + 2x}{x^2 + 2x} = 9$

Result: $x^2 + 2x = 9$ $Add \left(\frac{1}{2} \cdot 2\right)^2 = 1:$ +1 + 1

Result: $x^2 + 2x + 1 = 10$

Simplify the square: $(x+1)^2 = 10$

To determine the value to add to both sides, divide the coefficient of x by 2 and square the result.

To determine the

the coefficient of

x by 2 and square

the result.

value to add to both sides, divide

3. Write in vertex form: $y = x^2 - 4x - 5$

Starting Equation:

$$y = x^2 - 4x - 5$$

Add 5 to both sides:

Result:

$$y + 5 = x^2 - 4x$$

 $Add \left(\frac{1}{2} \cdot 4\right)^2 = 4:$

Result:

$$y + 9 = x^2 - 4x + 4$$

Simplify the square:

$$y + 9 = (x - 2)^2$$

Subtract 9 from both sides:

Result:

$$y = (x-2)^2 - 9$$

What is the vertex?

The general case of the vertex form is: $y = (x - h)^2 + k$, where (h, k) is the vertex.

So, the vertex is: (2, -9)

For #4-5, solve the system.

4. $\begin{cases} y = 2x^2 + 3x \\ y = 3x^2 + 5x - 8 \end{cases}$

Since both equations are of the form " $y = \cdots$ " we can set them equal to each other:

$$2x^{2} + 3x = 3x^{2} + 5x - 8$$

$$-2x^{2} - 3x - 2x^{2} - 3x$$

$$0 = x^{2} + 2x - 8$$

$$0 = (x + 4)(x - 2)$$

So, our solutions for x are: $x = \{-4, 2\}$

Next, find the y-values for each x-value.

 $y = 2x^{2} + 3x$ $x = -4: \quad y = 2 \cdot (-4)^{2} + 3 \cdot (-4) = 20$ $x = 2: \quad y = 2 \cdot (2)^{2} + 3 \cdot (2) = 14$

So, the solution set is: $\{(-4, 20), (2, 14)\}$

In this step, you can use either of the original equations. I selected the one that is easier to use.

5.
$$\begin{cases} y = x \\ 2y^2 + 7x - 9 = 0 \end{cases}$$

The (x-1) term gives the solution of x=1 by simply changing the sign of the number in the factor.

To solve the other term:

$$(2x+9) = 0$$

$$-9 - 9$$

$$2x = -9$$

$$\div 2 \div 2$$

$$x = -\frac{9}{2}$$

Since only one equation is of the form " $y = \cdots$ " we can substitute it into the other:

$$2v^2 + 7x - 9 = 0$$

Then, since y = x

$$2x^2 + 7x - 9 = 0$$

$$\rightarrow$$
 $(2x+9)(x-1)=0$

So, our solutions for x are: $x = \left\{-\frac{9}{2}, 1\right\}$

Next, find the y-values for each x-value.

$$x = -\frac{9}{2}$$
: $y = x = -\frac{9}{2}$

$$x = 1$$
: $y = x = 1$

So, the solution set is: $\left\{\left(-\frac{9}{2}, -\frac{9}{2}\right), (1, 1)\right\}$

For #6-7, a) solve and graph the inequality and b) write the solution:

6. $x^2 - 3x > 28$

Starting Equation: $x^2 - 3x \ge 28$

Subtract 28 from both sides: -28 - 28

Result: $x^2 - 3x - 28 \ge 0$

Factor: $(x-7)(x+4) \ge 0$

Create an interval table to determine the sign of (x-7)(x+4) in each interval. Break points are the roots of (x-7)(x+4)=0, which are $x=\{-4,7\}$.

Interval:	$(-\infty, -4)$	(-4,7)	(7,∞)
Sign of: $(x - 7)(x + 4)$	(_	\oplus

b. So, $(x-7)(x+4) \ge 0$ when $x \le -4$ or $x \ge 7$.

7. $x^2 - 16 \le 0$

Starting Equation:

$$x^2 - 16 \le 0$$

Factor:

$$(x-4)(x+4) \le 0$$

Create an interval table to determine the sign of (x-4)(x+4) in each interval. Break points are the roots of (x-4)(x+4)=0, which are $x=\{-4,4\}$.

Interval:	$(-\infty, -4)$	(-4,4)	(4,∞)
Sign of: $(x - 4)(x + 4)$	+		+

b. So, $(x-4)(x+4) \le 0$ when $-4 \le x \le 4$.

For #8-9, solve using the quadratic formula. If needed, write in terms of i and simplify all radicals. No Decimals!

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

8. $x^2 + 4x + 3 = 0$

$$x = \frac{-(4) \pm \sqrt{(4)^2 - 4 \cdot (1) \cdot (3)}}{2 \cdot (1)} = \frac{-4 \pm \sqrt{4}}{2} = \frac{-4 \pm 2}{2}$$

The two solutions, then, are:

$$x = \frac{-4 - 2}{2} = \frac{-6}{2} = -3$$
 and $x = \frac{-4 + 2}{2} = \frac{-2}{2} = -1$

9. $2x^2 - 7x + 11 = -1$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot (2) \cdot (11)}}{2 \cdot (2)} = \frac{7 \pm \sqrt{-39}}{4} = \frac{-7 \pm i\sqrt{39}}{4}$$

For #10 - 13, solve by factoring.

10. $x^2 + 6x - 27 = 0$ (x+9)(x-3) = 0 $x = \{-9, 3\}$ When the factored form is this simple, you can simply change the signs of the numbers in the factors to get the solutions for x.

x - 4 = 0

11.
$$2x^2 - 9x + 4 = 0$$

$$(2x - 1)(x - 4) = 0$$

$$2x - 1 = 0 \longrightarrow$$

2x = 1

Or ... simply flip the sign of the " -4" in the factor to get x = +4.

12.
$$3x^2 + 15x = 0$$

$$3x(x+5)=0$$

$$x = \{0, -5\}$$

13.
$$4x^2 - 25 = 0$$

$$(2x - 5)(2x + 5) = 0$$

$$x=\left\{\frac{5}{2},-\frac{5}{2}\right\}$$

For #s 14 – 19, solve by square rooting. If needed, write in terms of i and simplify all radicals. No Decimals!

14.
$$2x^2 + 5 = 41$$

$$\begin{array}{rcl}
-5 & -5 \\
2x^2 & = 36 \\
\div 2 & \div 2 \\
x^2 & = 18
\end{array}$$

$$x^2 = 18$$

$$x = \pm \sqrt{18}$$
 by square rooting

$$x = \pm 3\sqrt{2}$$

15.
$$(x-3)^2 = 4$$

$$x-3 = \pm 2$$
 by square rooting

$$\begin{array}{ccc} & +3 & +3 \\ \hline x & = 3 \pm 2 \end{array}$$

$$x = \{1, 5\}$$

16.
$$2(x-6)^2-45=53$$

$$2(x-6)^2 = 98
\div 2 \div 2$$

$$\frac{-2}{(x-6)^2} = 49$$

$$x - 6 = \pm 7$$
 by square rooting

$$x = 6 \pm 7$$

$$x = \{-1, 13\}$$

17.
$$8(x+4)^2 - 18 = -2$$

$$8(x+4)^2 = 16$$

$$\div 8 \div 8$$

$$(x+4)^2 = 2$$

$$x + 4 = \pm \sqrt{2}$$
 by square rooting

$$-4 -4$$

$$x = -4 + \sqrt{2}$$

18.
$$3(x + 4)^2 + 40 = -20$$
 $-40 - 40$

$$3(x + 4)^2 = -60$$
 $\div 3 \div 3$

$$(x + 4)^2 = -20$$
 $x + 4 = \pm \sqrt{-20}$ by square rooting
$$x + 4 = \pm 2i\sqrt{5}$$
 $-4 - 4$

$$x = -4 + 2i\sqrt{5}$$

19.
$$2(x-1)^{2} + 65 = -95$$

$$-65 - 65$$

$$2(x-1)^{2} = -160$$

$$\div 2 \qquad \div 2$$

$$(x-1)^{2} = -80$$

$$x - 1 = \pm \sqrt{-80} \text{ by square rooting}$$

$$x - 1 = \pm 4i\sqrt{5}$$

$$+1 + 1$$

$$x = 1 \pm 4i\sqrt{5}$$

For #20-23, find the discriminant (Δ) and give the number of solutions. Note: $\Delta = b^2 - 4ac$

20.
$$x^2 + 6x + 2 = 0$$

 $\Delta = (6)^2 - 4(1)(2) = 28$

A positive discriminant means there are **two real solutions**.

21.
$$2x^2 - 8x + 21 = 9$$

 $-9 - 9$
 $2x^2 - 8x + 12 = 0$
 $\Delta = (-8)^2 - 4(2)(12) = -32$

A negative discriminant means there are zero real solutions.

Note: there are two complex solutions (i.e., solutions containing i).

22.
$$2x^2 + 2 = -4x$$

 $+4x + 4x$
 $2x^2 + 4x + 2 = 0$
 $\Delta = (4)^2 - 4(2)(2) = 0$

A zero discriminant means there is **one real solution**.

23.
$$x^2 - 4x - 7 = 0$$

 $\Delta = (-4)^2 - 4(1)(-7) = 44$

A positive discriminant means there are **two real solutions**.

24. When Harry the human cannonball is projected into the air his height is modeled by the equation $f(x) = -12(x-2)^2 + 122$ where x is the time, in seconds, after Harry is launched. What is the maximum height that Harry attains?

The general case of vertex form is: $y = (x - h)^2 + k$, where (h, k) is the vertex.

So, the vertex is: (2, 122). The vertex occurs at either the minimum or the maximum of the equation. Since this equation opens down (lead coefficient is -12), it has a maximum. The maximum height is the y-value of the vertex = 122 units.

For #25-28, graph. Include the vertex, intercepts, and maximum or minimum.

25. $y = -(x-2)^2 + 4$

This function is in vertex form, so we can read the vertex directly from the equation: vertex = (2, 4).

The function **opens down** because the lead coefficient is negative. Therefore, the function has a maximum at the vertex.

Maximum = 4

To find the roots, multiply out the terms of the equation and factor it:

$$y = -(x - 2)^2 + 4$$

$$y = -(x^2 - 4x + 4) + 4$$

$$y = -(x^2 - 4x)$$

$$y = -x(x-4)$$

So the x-intercepts are $x = \{0, 4\}$

Vertex: (2, 4)

x-intercepts: $x = \{0, 4\}$ max/min: max = 4

26. y = 2(x-1)(x+3)

This function is in intercept form, so we can read the **x-intercepts** directly from the equation, $x = \{1, -3\}$

The x-coordinate of the vertex is halfway between the x-intercepts, at x = -1.

The y-value of the vertex is obtained by substituting x=-1 into the original equation.

$$y = 2(-1 - 1)(-1 + 3) = -8$$

The function **opens up** and has a minimum because the lead coefficient is positive. The minimum is equal to the y-coordinate of the vertex.

Minimum = -8

Vertex: (-1, -8)

x-intercepts: $x = \{1, -3\}$

max/min: min = -8

27. $y = x^2 - 4x - 12$

$$y = (x - 6)(x + 2)$$

so, *x*-intercepts are at $x = \{6, -2\}$

The x-coordinate of the vertex is halfway between the roots, at x = 2.

The y-value of the vertex is obtained by substituting x=2 into the original equation.

$$y = (2)^2 - 4 \cdot (2) - 12 = -16$$

The function **opens up** and has a minimum because the lead coefficient is positive. The minimum is equal to the y-coordinate of the vertex.

$$Minimum = -16$$

Vertex: (2, -16)

x-intercepts: $x = \{6, -2\}$ max/min: min = -16

28.
$$y = -(x-3)^2$$

This function is in vertex form and is also in intercept form (with k=0). Yes, this happens sometimes.

Because this function has only one factor, it has only one x-intercept, which can be read from the equation as x = 3.

The vertex occurs at that x-intercept. So, the vertex is (3, 0).

Since the lead coefficient is negative, the function **opens down**. So, it has a maximum at the vertex.

Maximum = 0

Vertex: (3, 0)x-intercept: x = 3max/min: max = 0

