Algebra 2: Semester 2 Practice Final "Unofficial" Worked-Out Solutions by Earl Whitney

1. The key to this problem is recognizing cubes as factors in the radicands.

$$8\sqrt[3]{27} + \sqrt[3]{40} - 6\sqrt[3]{135}$$

$$= 8 \cdot \sqrt[3]{27} + \sqrt[3]{8} \cdot \sqrt[3]{5} - 6 \cdot \sqrt[3]{27} \cdot \sqrt[3]{5}$$

$$= 8 \cdot 3 + 2 \cdot \sqrt[3]{5} - 6 \cdot 3 \cdot \sqrt[3]{5}$$

$$= 24 + 2 \cdot \sqrt[3]{5} - 18 \cdot \sqrt[3]{5}$$

$$= 24 - 16\sqrt[3]{5}$$
 Answer A

Cubes $1^{3} = 1$ $2^{3} = 8$ $3^{3} = 27$ $4^{3} = 64$ $5^{3} = 125$ $6^{3} = 216$ $7^{3} = 343$ $8^{3} = 512$ $9^{3} = 729$

2. The key to this problem is recognizing that $64 = 4^3$.

$$\frac{4^{2/3} \cdot 64^{2/3}}{4^{4/3}} = \frac{4^{2/3} \cdot (4^3)^{2/3}}{4^{4/3}} = \frac{4^{2/3} \cdot 4^2}{4^{4/3}} = 4^{\left(\frac{2}{3} + 2 - \frac{4}{3}\right)} = 4^{1\frac{1}{3}} = 4^1 \cdot 4^{\frac{1}{3}} = 4 \cdot \sqrt[3]{4}$$
Answer D

3. Divide the exponents under the radical by 4 (the root) to get a new expression.

$$\sqrt[4]{625 \ x^{48} \ y^{36} \ z^{72}} = \sqrt[4]{625} \cdot x^{48/4} \cdot y^{36/4} \cdot z^{72/4}$$

$$= 5 \ x^{12} \ y^9 \ z^{18}$$
Answer C

$$4^{th}$$
 Powers
 $1^4 = 1$
 $2^4 = 16$
 $3^4 = 81$
 $4^4 = 256$
 $5^4 = 625$

4. Make sure to rationalize the denominator.

$$\frac{\sqrt[3]{c^5} \cdot \sqrt[3]{c^4}}{\sqrt[3]{c^{10}}} = c^{5/3} \cdot c^{4/3} \cdot c^{-10/3} = c^{5/3 + 4/3 - 10/3} = c^{-1/3} = \frac{1}{c^{1/3}}$$

Now, we need an integer exponent in the denominator, so:

$$\frac{1}{c^{1/3}} \cdot \frac{c^{2/3}}{c^{2/3}} = \frac{c^{2/3}}{c} = \frac{\sqrt[3]{c^2}}{c}$$

Answer A

5. Addition and subtraction of polynomials can be performed in columns. To subtract, change the signs of the polynomial being subtracted and add.

Addition	Subtraction
$5x^2 + 6x - 4$	$5x^2 + 6x - 4$
$3x^2 - 5x + 24$	$-3x^2 + 5x - 24$
$8x^2 + x + 20$	$2x^2 + 11x - 28$

Answer A

- 6. When thinking about composite functions, consider each function as a mechanism that takes an input and does something to it. In this problem:
 - g(x) = 5x, so if you give something to g, it will multiply it by 5 and give you the result.
 - h(x) = 3x + 8, so if you give something to h, it will multiply it by 3, add 8, and give you the result.

Given this, we get:

$$g(h(x)) = 5 \cdot (3x + 8) = 15x + 40$$

 $h(g(x)) = (3 \cdot (5x) + 8) = 15x + 8$ Answer B

7. To find an inverse of a function, switch the x and y variables and solve for the new y.

Starting function:
$$y = -7x + 6$$
Switch x and y :
$$x = -7y + 6$$
Subtract 6 from each side:
$$-6 - 6$$
Divide each side by -7 :
$$x - 6 = -7y$$

$$x - 7 = -7$$

$$-x + 6$$

$$7 = y$$

Answer B

8. Starting function:
$$y = x^2 + 5$$
Switch x and y :
$$x = y^2 + 5$$
Subtract 5 from each side:
$$-5 - 5$$
Take a square root of each side:
$$\sqrt{x - 5} = y$$

Answer A

Notice that we do not get $y=\pm\sqrt{x-5}$ as our result. The reason for this is that the question requires that the result be a function, and the " \pm " means the result is not a function (it would have two y-values for each x-value).

9. Isolate the radical, then square both sides of the equation.

 $\sqrt{5x+9}-10=12$ Starting equation: Add 10 to each side: +10 + 10 $\sqrt{5x+9}$ = 22Square both sides: 5x + 9= 484Subtract 9 from each side: _9 **-** 9 5*x* = 475Divide each side by 5: ÷ 5 ÷ 5

Answer A

10. This problem has no solution because a square root cannot have a negative value.

Answer D

11. There are two parts to this problem. We must solve the inequality, but also we must make sure the expression under the radical is positive.

x = 95

Part 1: Solve the radical

Part 2: Check under the radical

Need radicand to be ≥ 0 : $10x + 14 \geq 0$

Note above that 10x + 14 > 484, so 10x + 14 will also be > 0. Therefore, the solution is what we obtained in Part 1: x > 47.

12. There are two parts to this problem. We must solve the inequality, but also we must make sure the expression under the radical is positive.

Part 1: Solve the radical

Original inequality:	$\sqrt{2x-3} + 1 \le 7$	
Subtract 1 from each side:		
	$\sqrt{2x-3}$	≤ 6
Square both sides:	2x - 3	≤ 36
Add 3 to each side:	+3	+ 3
	2x	<u>≤</u> 39
Divide each side by 2:	÷ 2	÷ 2
	$x \le \frac{39}{2}$	

Part 2: Check under the radical

Need radicand to be
$$\geq 0$$
: $2x - 3 \geq 0$

Add 3 to each side: $+3 + 3$

$$2x \geq 3$$
Divide each side by 2: $\div 2 \div 2$

$$x \geq \frac{3}{2} \Rightarrow \frac{3}{2} \leq x$$

We must combine the two results to get the final answer.

$$\frac{3}{2} \le x \le \frac{39}{2}$$
 Answer D

13. The domain is all values of x that can produce a value of y. We must make sure the expression under the radical is positive or zero (≥ 0).

Need radicand to be
$$\geq 0$$
: $x-3 \geq 0$
Add 3 to each side: $+3+3$

$$x \geq 3 \text{ is the domain}$$

The range is all values of y that can be produced by values of x. The smallest value that $\sqrt{x-3}$ can have is zero, and it can have any value greater than that. Then:

$$g(x) = 6 + \sqrt{x - 3} \ge 6 + 0 = 6$$
 so $g(x) \ge 6$ is the range Answer B

14. The function requires $x \ge -5$ in order to have a positive radicand, so the function starts on the left at x = -5. There is no "as $x \to -\infty$ ".

The end behavior will be on the right, as $x \to \infty$. Then, notice that as x increases without end, $\sqrt{x+5}$ also increases without end. So,

as
$$x \to \infty$$
, $f(x) \to \infty$

Answer D

15. Any function of the form: $y = a \cdot \sqrt[n]{x - h} + k$ (with n being any **even** positive integer) will have a vertex at (h, k).

For this equation, h = 3 and k = 0, so the vertex must be at (3, 0).

Answer A

16. Any function of the form: $y = a \cdot \sqrt[n]{x - h} + k$ (with n being any **odd** positive integer) will have an inflection point at (h, k). An *inflection point* is a point that looks like the center of the curve (in higher level mathematics, it is defined as a point where the slope of the curve changes from increasing to decreasing or from decreasing to increasing).

For this equation, h = 0 and k = 0, so the inflection point is at (0,0). Translating the graph 2 units up and 5 units left resets the inflection point at (-5,2).

Answer A

17. The domain is all values of x that can produce a value of y. In exponential functions, the domain is generally all real numbers.

The exponential term, 2^x is always greater than zero, and can be any value above zero. So,

$$y = 2^x + 1 > 0 + 1 = 1$$
 so $y > 1$ is the range

Answer A

18. In logarithmic functions, the range is generally all real numbers.

The argument of the logarithm, (x-2) must be greater than zero, and can be any value above zero (you can only take logs of positive numbers). So,

Need argument to be > 0:

$$x - 2 > 0$$

Add 3 to each side:

> 2

X

is the domain

Answer D

19. Each term in this problem can be simplified; then, the results can be added. You may need to calculate powers of 3 and 5 to see what values the logarithms have.

$$\log_3 243 + \ln(e^{10}) - \log_5 625$$

= $\log_3(3^5) + \ln(e^{10}) - \log_5(5^4)$
= $5 + 10 - 4 = 11$ Answer C

22. When the base of the exponentiation and the base of the logarithm are the same, they cancel each other out.

$$8^{\log_8 5} = 5$$

23. To solve exponential equations, take a logarithm of each side. The problem is solved below twice, once using ln and once using log. The answers are the same. You can use either.

Original equation:
$$11^x = 247$$

$$11^x = 247$$

$$x \cdot \log 11 = \log 247$$
 Divide by the multiplier of x :
$$x = \frac{\ln 247}{\ln 11}$$

$$x = \frac{\log 247}{\log 11}$$
 Calculate:
$$x = \frac{5.51}{2.40} = 2.30$$

$$x = \frac{2.39}{1.04} = 2.30$$

Answer B

24. This problem can be solved in two different ways, and we will look at both.

Method 1: Exponents Only Method

Original problem: $4^{5x} = 64^{x+8}$

Convert 64 to 4^3 : $4^{5x} = (4^3)^{x+8}$

Multiply exponents: $4^{5x} = 4^{3x+24}$

Exponents must be equal: 5x = 3x + 24

Subtract 3x from each side: -3x - 3x

2x = 24

Divide each side by 2: \div 2 \div 2

x = 12

Answer D

Method 2: Logarithm Method

Original problem: $4^{5x} = 64^{x+8}$

Take \log_4 of each side: $5x = (x + 8) \cdot \log_4 64$

 $\log_4 64 = 3$: $5x = (x + 8) \cdot 3$

Multiply: 5x = 3x + 24

Subtract 3x from each side: -3x - 3x

2x = 24

Divide each side by 2: $\div 2 \div 2$

x = 12

25. Condense the expression on the right, then set the arguments equal.

Original equation: $\log_7(2x+9) = \log_7 x + \log_7(x+10)$

Condense expression on right: $\log_7(2x + 9) = \log_7[x(x + 10)]$

Arguments must be equal: $2x + 9 = x^2 + 10x$

Add -2x - 9 to each side: -2x - 9 = -2x - 9

 $0 = x^2 + 8x - 9$

Factor: 0 = (x + 9)(x - 1)

Interim Solutions: $x = \{-9, 1\}$

Test Solutions: -9 does not work because $\log_7(-9)$ does not exist.

1 works \checkmark $\log_7(2 \cdot 1 + 9) = \log_7(1) + \log_7(1 + 10)$

Final Solution: x = 1 Answer C

26. Condense the expression on the left, then exponentiate both sides.

Original equation: $\log_8(x-12) + \log_8 x = 2$

Condense expression on left: $\log_8[x(x-12)] = 2$

Take 8 to the power of each side: $x(x-12) = 8^2$

Multiply: $x^2 - 12x = 64$

Subtract 64 from each side: -64 - 64

$$x^2 - 12x - 64 = 0$$

Factor: (x + 4)(x - 16) = 0

Interim Solutions: $x = \{-4, 16\}$

Test Solutions: -4 does not work because $\log_8(-4)$ does not exist.

16 works $\checkmark \log_8(16-12) + \log_8 16 = 2$

Final Solution: x = 16 Answer C

27. Values of the variables:

- ightharpoonup Compounding is quarterly, so n=4 ightharpoonup r=7%=.07
- > t = 7 years > P = \$7.500

$$A = \$7,500 \cdot \left(1 + \frac{.07}{4}\right)^{4\cdot7} = \$12,190.60$$
 Answer B

28. Values of the variables:

- ightharpoonup Compounding is annual, so n=1 ightharpoonup r=5%=.05
- A = \$8,750 P = \$5,000

Starting Equation: $\$8,750 = \$5,000 \cdot (1+.05)^t$

Divide both sides by \$5,000: \div \$5,000 \div \$5,000

$$1.75 = (1 + .05)^t$$

Take a log of both sides: $0.243 = t \cdot \log 1.05$

Calculate $\log 1.05 = 0.0211$: $0.243 = t \cdot 0.0211$

Divide by 0.0211: $\div 0.0211 \div 0.0211$

11.47 = t

Answer B

29. Values of the variables:

$$r = 5\% = .05$$

$$\rightarrow$$
 $t = 5$ years

$$P = $5,000$$

$$A = \$5,000 \cdot e^{(.05)\cdot 5} = \$5,000 \cdot e^{0.25} = \$6,420.13$$

Answer B

30. Values of the variables:

$$r = 7\% = .07$$

$$A = \$7,700$$

$$P = $7,000$$

$$\$7,700 = \$7,000 \cdot e^{(.07) \cdot t}$$

$$\div$$
 \$7,000 \div \$7,000

$$1.10 = e^{(.07) \cdot t}$$

Take the natural log of both sides:

$$0.0953 = .07 t$$

$$\div .07 \quad \div .07$$

1.36 = t

31. To get values omitted from the domain and range, consider the asymptotes.

A vertical asymptote exists at the value of x where the denominator is zero.

Want denominator not equal to zero:

$$2x - 8 \neq 0$$

Add 8 to each side:

Divide by 2:

$$\begin{array}{rcl}
2x & \neq & 8 \\
\div & 2 & \div & 2
\end{array}$$

$$x \neq 4$$

 \neq 4 is the domain

A horizontal asymptote exists at the value that y approaches as $x \to \infty$. Since the numerator and denominator have the same degree, the value of y that we seek is the ratio of the lead coefficients of the expressions in the numerator and denominator.

Since:
$$y = \frac{1x - 6}{2x - 8}$$

$$y \neq \frac{1}{2}$$
 is the range

Answer A

32. A horizontal asymptote exists at the value that y approaches as $x \to \infty$. Since the numerator and denominator have the same degree, the value of y that we seek is the ratio of the lead coefficients of the expressions in the numerator and denominator.

Since:
$$y = \frac{3x+4}{1x-5}$$

Since:
$$y = \frac{3x+4}{1x-5}$$
 $y \to \frac{3}{1} = 3$ as $x \to \infty$ and as $x \to -\infty$

Answer C

- 33. Translation converts to changes in the equation as follows:
 - \triangleright Translation **h** units left changes x to x + h.
 - \triangleright Translation h units right changes x to x-h.
 - \triangleright Translation k units down adds -k as a constant to the expression.
 - \triangleright Translation k units up adds k as a constant to the expression.

In this problem, we change x to x-1 and add 2 as a constant to the expression. So,

$$f(x) = \frac{1}{x-1} + 2 = \frac{2(x-1)+1}{x-1} = \frac{2x-1}{x-1}$$

Answer B

34. Identify the graph by finding the asymptotes.

A vertical asymptote exists at the value of x where the denominator is zero.

Want denominator equal to zero:

$$x + 3 = 0$$

Subtract 3 from each side:

$$-3 -3$$

 $\frac{-3 - 3}{r} = -3$ is a vertical asymptote

A horizontal asymptote exists at the value that y approaches as $x \to \infty$. Since the numerator and denominator have the same degree, the value of y that we seek is the ratio of the lead coefficients of the expressions in the numerator and denominator.

Since:
$$y = \frac{3x+1}{1x+3}$$

Since:
$$y = \frac{3x+1}{1x+3}$$
 $y = \frac{3}{1} = 3$ is a horizontal asymptote

Answer A

35. Factor first and then simplify. You may look at the answers to help you do your factoring.

$$\frac{x^2 - x - 30}{2x^2 - 11x - 6} = \frac{(x+5)(x-6)}{(2x+1)(x-6)} = \frac{(x+5)}{(2x+1)}$$

Answer C

36. Regarding the second fraction, "flip that guy and multiply."

$$\frac{x^2 - 3x - 10}{x^2 + 2x - 3} \div \frac{x + 5}{x + 3} = \frac{x^2 - 3x - 10}{x^2 + 2x - 3} \cdot \frac{x + 3}{x + 5}$$

$$= \frac{(x - 5)(x + 2)}{(x - 1)(x + 3)} \cdot \frac{(x + 3)}{(x + 5)}$$

$$= \frac{(x - 5)(x + 2)}{(x - 1)(x + 5)}$$
Answer A

37. One of the easiest problems on the test. Don't expect one like this on the real final.

$$\frac{7}{x-4} - \frac{11}{x-4} = \frac{7-11}{x-4} = \frac{-4}{x-4}$$
 Answer D

38. Get a common denominator and add.

$$\frac{4x+5}{x^2-25} + \frac{7}{x-5} = \frac{4x+5}{(x-5)(x+5)} + \frac{7}{(x-5)}$$

$$= \frac{4x+5}{(x-5)(x+5)} + \frac{7(x+5)}{(x-5)(x+5)}$$

$$= \frac{(4x+5) + (7x+35)}{(x-5)(x+5)}$$

$$= \frac{11x+40}{x^2-25}$$
 Answer A

39. Cross multiply, but remember that denominators cannot be zero, so $x \neq \{5, -6\}$.

$$\frac{x+4}{x-5} = \frac{x-3}{x+6} \Rightarrow (x+4)(x+6) = (x-5)(x-3)$$
Add and subtract items so that the result has the x's on one side and the constants on the other.
$$x^2 + 10x + 24 = x^2 - 8x + 15$$

$$-x^2 + 8x - 24 = -x^2 + 8x - 24$$

$$18x = -9$$

$$\div 18$$

$$\div 18$$

$$x = -\frac{1}{2}$$
Answer B

40. Get a common denominator and then work with the numerators. Remember that denominators cannot be zero, so $x \neq \{1, 6\}$.

$$\frac{3x}{x-1} + \frac{2x}{x-6} = \frac{5x^2 - 15x + 20}{x^2 - 7x + 6}$$
$$\frac{(x-6)}{(x-6)} \cdot \frac{3x}{(x-1)} + \frac{2x}{(x-6)} \cdot \frac{(x-1)}{(x-1)} = \frac{5x^2 - 15x + 20}{(x-6)(x-1)}$$

Now, work with the numerators only. The denominator can be discarded.

$$(x-6) \cdot (3x) + (2x) \cdot (x-1) = 5x^2 - 15x + 20$$

$$(3x^2 - 18x) + (2x^2 - 2x) = 5x^2 - 15x + 20$$

$$5x^2 - 20x = 5x^2 - 15x + 20$$

$$-5x^2 + 15x - 5x^2 + 15x$$

$$-5x = 20$$

$$\div (-5) \div (-5)$$

$$x = -4$$
Answer D

41. This inequality generates 3 regions to test, as follows.

A regional break is created where the numerator is zero:

$$x - 1 = 0 \rightarrow x = 1$$

A regional break is created where the denominator is zero:

$$x + 2 = 0 \rightarrow x = -2$$

Regions A and B meet the requirements of the inequality, so, x < -2 or x > 1

Answer A

42. This inequality generates 3 regions to test. But first, you must get everything on one side of the inequality.

$$\frac{x-1}{x+2} \le 5$$

$$-5 - 5$$

$$\frac{x-1}{x+2} - 5 \le 0$$

$$\frac{x-1}{x+2} - \frac{5(x+2)}{x+2} \le 0$$

$$\frac{x-1-5x-10}{x+2} \le 0$$

$$\frac{x-1-5x-10}{x+2} \le 0$$

$$\frac{x-1-5x-10}{x+2} \le 0$$

A regional break is created where the numerator is zero:

$$-4x - 11 = 0$$
 \rightarrow $x = \frac{-11}{4}$

A regional break is created where the denominator is zero:

$$x + 2 = 0 \rightarrow x = -2$$

At this point you can identify the correct answer without doing the regional work illustrated in problem 41 above.

The breakpoints are: $x = \frac{-11}{4}$ and x = -2. Note that answers A and B have these breakpoints and the difference between them is whether x = -2 is a solution. Note that when x = -2 the denominator of the inequality is zero, so x = -2 is *not* a solution.

43. The distance between the vertex and the focus is 6, so p = 6.

Then, since the path from the vertex to the focus is horizontal (in the x-direction), the form of the equation is:

$$x = \frac{1}{4p}(y - k)^2 + h$$
 and with a vertex of (0,0), this becomes: $x = \frac{1}{4p}y^2$

Then, with
$$p=6$$
, this becomes: $x=\frac{1}{24}y^2$ or $24x=y^2$ Answer A

- 44. Translation converts to changes in the equation as follows:
 - \triangleright Translation **h** units left changes x to x + h.
 - \triangleright Translation h units right changes x to x-h.
 - \triangleright Translation k units down changes y to y + k.
 - \triangleright Translation k units up changes y to y-k.

In this problem, we change x to x + 2 and y to y - 3. So,

$$y^2 = \frac{1}{5}x$$
 \Rightarrow $(y-3)^2 = \frac{1}{5}(x+2)$

Answer B

Translation Illustration

$$\begin{array}{c}
y-k \\
\uparrow \\
y \\
x+k \leftarrow x \quad x \longrightarrow x-k \\
\downarrow \\
y+k
\end{array}$$

45. Since the coefficients of the square terms are the same, this is the equation of a circle.

Starting equation:
$$3x^2 + 3y^2 + 24y + 18x - 27 = 0$$
Divide by 3 to simplify: $\div 3 \qquad \div 3$

$$x^2 + y^2 + 8y + 6x - 9 = 0$$
Add 9 to each side: $+9 + 9$

$$x^2 + y^2 + 8y + 6x = 9$$

$$r^2 \perp v^2 \perp 8v \perp 6v - 9$$

Rearrange terms:
$$(x^2 + 6x + _) + (y^2 + 8y + _) = 9$$

Complete the squares:
$$(x^2 + 6x + 9) + (y^2 + 8y + 16) = 9 + 9 + 16$$

Simplify:
$$(x+3)^2 + (y+4)^2 = 34$$

Answer A

- 46. Translation converts to changes in the equation as follows:
 - \triangleright Translation **h** units left changes x to x + h.
 - \triangleright Translation h units right changes x to x h.
 - \triangleright Translation k units down changes y to y + k.
 - \triangleright Translation k units up changes y to y-k.

In this problem, we change x to x-2 and y to y+6. So,

$$x^2 + y^2 = 8$$
 \Rightarrow $(x-2)^2 + (y+6)^2 = 8$ Answer B

47. Conditional probability. Use numbers for only the populations identified.

$$P = \frac{females\ with\ part\ time\ jobs}{all\ people\ with\ part\ time\ jobs} = \frac{225}{225 + 200} = \frac{225}{425} = 0.53$$
 Answer B

48. 10 tails out of 30 coin tosses:

$$P = {}_{30}C_{10} \cdot \left(\frac{1}{2}\right)^{10} \cdot \left(\frac{1}{2}\right)^{20} = {}_{30}C_{10} \cdot \left(\frac{1}{2}\right)^{30} = \frac{30!}{10! \cdot 20! \cdot 2^{30}} = 0.028$$
tails heads Answer D

Normal Distribution with μ = 0 and σ = 1

49. Calculate the z-statistic and locate it on the above graph.

$$z = \frac{x - \mu}{\sigma} = \frac{59 - 64}{2.5} = -2$$

We want the probability to the left of z=-2 because we want women with heights below (i.e., shorter than) 59 inches.

The cumulative probability to the left of z=-2 is 0.0013+0.0215=0.0228. The closest answer to this on the sample test is 0.025.

50. Calculate the z-statistics and locate them on the above graph.

$$z_1 = \frac{x - \mu}{\sigma} = \frac{67 - 70}{3} = -1$$
 $z_2 = \frac{x - \mu}{\sigma} = \frac{76 - 70}{3} = 2$

We want the probability between z=-1 and z=2 because we want men with heights between 67 and 76 inches.

The probability between z = -1 and z = 2 is roughly 0.34 + .034 + 0.14 = 0.82.

Answer D